cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377507 Expansion of e.g.f. exp(Sum_{k>=1} phi(k)^2 * x^k/k), where phi is the Euler totient function A000010.

Original entry on oeis.org

1, 1, 2, 12, 66, 690, 4860, 63000, 711900, 8876700, 131405400, 2160219600, 37553808600, 686750664600, 13805424032400, 278759396916000, 6445702905642000, 150985820419434000, 3825993309462324000, 99427990563910008000, 2724045313186016820000, 78032929885709378580000
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; $RecursionLimit->Infinity; a[n_]:=a[n]=If[n==0, 1, Sum[EulerPhi[k]^2*a[n-k], {k, 1, n}]/n];Table[a[n]*n!, {n, 0, nmax}]
    nmax = 25; CoefficientList[Series[Exp[Sum[EulerPhi[k]^2 * x^k / k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

log(a(n)/n!) ~ 3 * c^(1/3) * n^(2/3) / 2^(2/3), where c = Product_{p primes} (1 - 2/p^2 + 1/p^3) = A065464 = 0.428249505677094440218765707581823546121298...