cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A377516 The number of divisors of n that are terms in A276078.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 3, 4, 2, 4, 2, 4, 4, 2, 2, 6, 2, 4, 4, 4, 2, 4, 3, 4, 3, 4, 2, 8, 2, 2, 4, 4, 4, 6, 2, 4, 4, 4, 2, 8, 2, 4, 6, 4, 2, 4, 3, 6, 4, 4, 2, 6, 4, 4, 4, 4, 2, 8, 2, 4, 6, 2, 4, 8, 2, 4, 4, 8, 2, 6, 2, 4, 6, 4, 4, 8, 2, 4, 3, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Oct 30 2024

Keywords

Comments

The sum of these divisors is A377517(n), and the largest of them is A377515(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Min[PrimePi[p], e] + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, min(primepi(f[i,1]), f[i,2]) + 1);}

Formula

a(n) = A000005(A377515(n)).
Multiplicative with a(p^e) = min(pi(p), e) + 1, where pi(n) = A000720(n).
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^((pi(p)+1)*s)).

A377517 The sum of the divisors of n that are terms in A276078.

Original entry on oeis.org

1, 3, 4, 3, 6, 12, 8, 3, 13, 18, 12, 12, 14, 24, 24, 3, 18, 39, 20, 18, 32, 36, 24, 12, 31, 42, 13, 24, 30, 72, 32, 3, 48, 54, 48, 39, 38, 60, 56, 18, 42, 96, 44, 36, 78, 72, 48, 12, 57, 93, 72, 42, 54, 39, 72, 24, 80, 90, 60, 72, 62, 96, 104, 3, 84, 144, 68, 54
Offset: 1

Views

Author

Amiram Eldar, Oct 30 2024

Keywords

Comments

First differs from A046897 at n = 27 = 3^3: a(27) = 13, while A046897(27) = 40.
The number of these divisors is A377516(n), and the largest of them is A377515(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(Min[PrimePi[p], e] + 1) - 1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(min(primepi(f[i,1]), f[i,2]) + 1) - 1)/(f[i,1] - 1));}

Formula

a(n) = A000203(A377515(n)).
Multiplicative with a(p^e) = (p^(min(pi(p), e)+1) - 1)/(p - 1), where pi(n) = A000720(n).
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (p^((pi(p)+1)*s) - p^(pi(p)+1))/p^((pi(p)+1)*s).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(2) * Product_{p prime} (1 - 1/p^(pi(p)+1)) = 1.18603586369737251334... .

A377518 The largest divisor of n that is a term in A207481.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 4, 9, 10, 11, 12, 13, 14, 15, 4, 17, 18, 19, 20, 21, 22, 23, 12, 25, 26, 27, 28, 29, 30, 31, 4, 33, 34, 35, 36, 37, 38, 39, 20, 41, 42, 43, 44, 45, 46, 47, 12, 49, 50, 51, 52, 53, 54, 55, 28, 57, 58, 59, 60, 61, 62, 63, 4, 65, 66, 67, 68, 69
Offset: 1

Views

Author

Amiram Eldar, Oct 30 2024

Keywords

Comments

The number of these divisors is A377519(n), and their sum is A377520(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Min[p, e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^min(f[i,1], f[i,2]));}

Formula

Multiplicative with a(p^e) = p^min(p, e).
a(n) = n if and only if n is in A207481.
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (p^((p+1)*s) - p^(p+1) - p^(p*s) + p^p)/p^((p+1)*s).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 - 1/(p^p * (p+1))) = 0.908130438292447963703... .

A380085 The largest unitary divisor of n that is a term in A276078.

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 1, 9, 10, 11, 3, 13, 14, 15, 1, 17, 18, 19, 5, 21, 22, 23, 3, 25, 26, 1, 7, 29, 30, 31, 1, 33, 34, 35, 9, 37, 38, 39, 5, 41, 42, 43, 11, 45, 46, 47, 3, 49, 50, 51, 13, 53, 2, 55, 7, 57, 58, 59, 15, 61, 62, 63, 1, 65, 66, 67, 17, 69, 70, 71
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^If[e <= PrimePi[p], e, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^if(f[i,2] <= primepi(f[i,1]), f[i,2], 0));}

Formula

Multiplicative with a(p^e) = p^e if e <= pi(p) = A000720(p), and 1 otherwise.
a(n) = 1 if and only if n is in A325127.
a(n) = n if and only if n is in A276078.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{k>=1} (p(k)^(2*(k+1)) + p(k)^(2*k+1) - p(k)^(k+1) - p(k)^k + 1)/(p(k)^(2*k+1) * (p(k)+1)) = 0.76189494803691349595..., where p(k) = prime(k).
Showing 1-4 of 4 results.