cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377518 The largest divisor of n that is a term in A207481.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 4, 9, 10, 11, 12, 13, 14, 15, 4, 17, 18, 19, 20, 21, 22, 23, 12, 25, 26, 27, 28, 29, 30, 31, 4, 33, 34, 35, 36, 37, 38, 39, 20, 41, 42, 43, 44, 45, 46, 47, 12, 49, 50, 51, 52, 53, 54, 55, 28, 57, 58, 59, 60, 61, 62, 63, 4, 65, 66, 67, 68, 69
Offset: 1

Views

Author

Amiram Eldar, Oct 30 2024

Keywords

Comments

The number of these divisors is A377519(n), and their sum is A377520(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Min[p, e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^min(f[i,1], f[i,2]));}

Formula

Multiplicative with a(p^e) = p^min(p, e).
a(n) = n if and only if n is in A207481.
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (p^((p+1)*s) - p^(p+1) - p^(p*s) + p^p)/p^((p+1)*s).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 - 1/(p^p * (p+1))) = 0.908130438292447963703... .