This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377520 #7 Oct 31 2024 01:11:49 %S A377520 1,3,4,7,6,12,8,7,13,18,12,28,14,24,24,7,18,39,20,42,32,36,24,28,31, %T A377520 42,40,56,30,72,32,7,48,54,48,91,38,60,56,42,42,96,44,84,78,72,48,28, %U A377520 57,93,72,98,54,120,72,56,80,90,60,168,62,96,104,7,84,144,68 %N A377520 The sum of the divisors of n that are terms in A207481. %C A377520 First differs from A284341 at n = 81 = 3^4: a(81) = 40, while A284341(81) = 121. %C A377520 The number of these divisors is A377519(n), and the largest of them is A377518(n). %H A377520 Amiram Eldar, <a href="/A377520/b377520.txt">Table of n, a(n) for n = 1..10000</a> %F A377520 a(n) = A000203(A377518(n)). %F A377520 Multiplicative with a(p^e) = (p^(min(p, e)+1) - 1)/(p - 1). %F A377520 Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (p^((p+1)*s) - p^(p+1))/p^((p+1)*s). %F A377520 Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(2) * Product_{p prime} (1 - 1/p^(p+1)) = 1.42145673335960701365... . %t A377520 f[p_, e_] := (p^(Min[p, e] + 1) - 1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] %o A377520 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(min(f[i,1], f[i,2]) + 1) - 1)/(f[i,1] - 1));} %Y A377520 Cf. A000203, A013661, A207481, A284341, A377517, A377518, A377519. %K A377520 nonn,easy,mult %O A377520 1,2 %A A377520 _Amiram Eldar_, Oct 30 2024