A377517 The sum of the divisors of n that are terms in A276078.
1, 3, 4, 3, 6, 12, 8, 3, 13, 18, 12, 12, 14, 24, 24, 3, 18, 39, 20, 18, 32, 36, 24, 12, 31, 42, 13, 24, 30, 72, 32, 3, 48, 54, 48, 39, 38, 60, 56, 18, 42, 96, 44, 36, 78, 72, 48, 12, 57, 93, 72, 42, 54, 39, 72, 24, 80, 90, 60, 72, 62, 96, 104, 3, 84, 144, 68, 54
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := (p^(Min[PrimePi[p], e] + 1) - 1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(min(primepi(f[i,1]), f[i,2]) + 1) - 1)/(f[i,1] - 1));}
Formula
Multiplicative with a(p^e) = (p^(min(pi(p), e)+1) - 1)/(p - 1), where pi(n) = A000720(n).
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (p^((pi(p)+1)*s) - p^(pi(p)+1))/p^((pi(p)+1)*s).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(2) * Product_{p prime} (1 - 1/p^(pi(p)+1)) = 1.18603586369737251334... .
Comments