cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377524 Number of steps for n to reach the minimum of its final cycle under iterations of the map (A123684): x->(3x-1)/2 if x odd, x/2 otherwise; or -1 if this never happens.

Original entry on oeis.org

0, 1, 3, 2, 0, 4, 2, 3, 7, 1, 5, 5, 6, 3, 7, 4, 0, 8, 5, 2, 5, 6, 2, 6, 10, 7, 4, 4, 8, 8, 4, 5, 12, 1, 9, 9, 9, 6, 10, 3, 6, 6, 7, 7, 14, 3, 11, 7, 11, 11, 8, 8, 12, 5, 8, 5, 20, 9, 9, 9, 5, 5, 13, 6, 25, 13, 13, 2, 14, 10, 14, 10, 10, 10, 7, 7, 11, 11, 11, 4
Offset: 1

Views

Author

Kevin Ge, Oct 28 2024

Keywords

Comments

The currently known cycle minimums are 1, 5, 17 and there are no known a(n) = -1 (trajectory never reaches a cycle).
This sequence is one way to extend A006666 (number of Collatz (3x+1)/2 steps) to the negative numbers.

Examples

			For n = 5, a(5) = 0 because 5 is already the minimum of its "final cycle".
For n = 12, a(12) = 6 because 12 takes 6 iterations to reach the minimum of its "final cycle": 12 -> 6 -> 3 -> 8 -> 4 -> 2 -> 1.
		

Crossrefs

Cf. A123684 ((3x-1)/2 map), A135730 (all steps).
Cf. A006666 (for (3x+1)/2).

Programs

  • Julia
    function three_x_minus_one_delay(n::Int)
        count = 0
        while (n != 1 && n != 5 && n != 17)
            if (isodd(n))
                n += n << 1 - 1
            end
            n >>= 1
            count += 1
        end
        return count
    end