cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377528 E.g.f. satisfies A(x) = 1/(1 - x * exp(x) * A(x))^4.

This page as a plain text file.
%I A377528 #7 Oct 31 2024 06:48:01
%S A377528 1,4,60,1548,58456,2930020,183763704,13866109012,1224251041248,
%T A377528 123885272536452,14140672597851880,1797709847594145364,
%U A377528 251941291752251706576,38593132701417704324356,6415647343472197357272984,1150373241484390263973203540,221318733487356013660505462464
%N A377528 E.g.f. satisfies A(x) = 1/(1 - x * exp(x) * A(x))^4.
%F A377528 E.g.f.: B(x)^4, where B(x) is the e.g.f. of A377526.
%F A377528 a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(5*k+3,k)/( (k+1)*(n-k)! ).
%o A377528 (PARI) a(n) = n!*sum(k=0, n, k^(n-k)*binomial(5*k+3, k)/((k+1)*(n-k)!));
%Y A377528 Cf. A295238, A377503, A377504.
%Y A377528 Cf. A377526, A377527.
%K A377528 nonn
%O A377528 0,2
%A A377528 _Seiichi Manyama_, Oct 30 2024