cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377536 Integers that are the arithmetic mean of two distinct Fibonacci numbers (A000045).

This page as a plain text file.
%I A377536 #8 Dec 23 2024 22:18:25
%S A377536 1,2,3,4,5,7,8,9,11,12,13,17,18,21,28,29,30,34,38,45,46,47,51,55,72,
%T A377536 73,76,89,117,118,119,123,127,144,161,189,190,191,195,199,216,233,305,
%U A377536 306,309,322,377,494,495,496,500,504,521,538,610,682,799,800,801,805
%N A377536 Integers that are the arithmetic mean of two distinct Fibonacci numbers (A000045).
%C A377536 This sequence contains all positive Fibonacci numbers of A000045. Proof: For i >= 2, (F(i-2) + F(i+1))/2 = (F(i-2) + F(i-1) + F(i))/2 = (F(i-2) + F(i-1) + F(i-2) + F(i-1))/2 = F(i-1) + F(i-2) = F(i).
%H A377536 Felix Huber, <a href="/A377536/b377536.txt">Table of n, a(n) for n = 1..10000</a>
%H A377536 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FibonacciNumber.html">Fibonacci Number</a>
%e A377536 1 is in the sequence because (F(0) + F(3))/2 = (0 + 2)/2 = 1.
%e A377536 12 is in the sequence because (F(4) + F(8))/2 = (3 + 21)/2 = 12.
%p A377536 with(combinat):
%p A377536 A377536:=proc(k)
%p A377536    local L,M,i,j;
%p A377536    M:={};
%p A377536    L:=[seq(fibonacci(i),i=0..k)];
%p A377536    for i to k do
%p A377536       for j from i+1 to k+1 do
%p A377536          if is(L[i]+L[j],even) then
%p A377536             M:=[op(M),(L[i]+L[j])/2]
%p A377536          fi
%p A377536       od
%p A377536    od;
%p A377536    M:=convert(M,set);
%p A377536    return op(M)
%p A377536 end proc:
%p A377536 A377536(17)
%Y A377536 Cf. A000045, A084176.
%K A377536 nonn
%O A377536 1,2
%A A377536 _Felix Huber_, Dec 18 2024