This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377536 #8 Dec 23 2024 22:18:25 %S A377536 1,2,3,4,5,7,8,9,11,12,13,17,18,21,28,29,30,34,38,45,46,47,51,55,72, %T A377536 73,76,89,117,118,119,123,127,144,161,189,190,191,195,199,216,233,305, %U A377536 306,309,322,377,494,495,496,500,504,521,538,610,682,799,800,801,805 %N A377536 Integers that are the arithmetic mean of two distinct Fibonacci numbers (A000045). %C A377536 This sequence contains all positive Fibonacci numbers of A000045. Proof: For i >= 2, (F(i-2) + F(i+1))/2 = (F(i-2) + F(i-1) + F(i))/2 = (F(i-2) + F(i-1) + F(i-2) + F(i-1))/2 = F(i-1) + F(i-2) = F(i). %H A377536 Felix Huber, <a href="/A377536/b377536.txt">Table of n, a(n) for n = 1..10000</a> %H A377536 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FibonacciNumber.html">Fibonacci Number</a> %e A377536 1 is in the sequence because (F(0) + F(3))/2 = (0 + 2)/2 = 1. %e A377536 12 is in the sequence because (F(4) + F(8))/2 = (3 + 21)/2 = 12. %p A377536 with(combinat): %p A377536 A377536:=proc(k) %p A377536 local L,M,i,j; %p A377536 M:={}; %p A377536 L:=[seq(fibonacci(i),i=0..k)]; %p A377536 for i to k do %p A377536 for j from i+1 to k+1 do %p A377536 if is(L[i]+L[j],even) then %p A377536 M:=[op(M),(L[i]+L[j])/2] %p A377536 fi %p A377536 od %p A377536 od; %p A377536 M:=convert(M,set); %p A377536 return op(M) %p A377536 end proc: %p A377536 A377536(17) %Y A377536 Cf. A000045, A084176. %K A377536 nonn %O A377536 1,2 %A A377536 _Felix Huber_, Dec 18 2024