cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377541 E.g.f. satisfies A(x) = 1/(1 - x * exp(x*A(x)))^2.

This page as a plain text file.
%I A377541 #29 Nov 01 2024 09:29:54
%S A377541 1,2,10,90,1184,20650,450252,11803526,361892848,12712357170,
%T A377541 503564718260,22212233618542,1079909444635848,57379354040049002,
%U A377541 3308238701451609772,205715613407117613270,13724187813695296374752,977841609869801208944482,74108335568947966714172004
%N A377541 E.g.f. satisfies A(x) = 1/(1 - x * exp(x*A(x)))^2.
%F A377541 E.g.f.: B(x)^2, where B(x) is the e.g.f. of A364980.
%F A377541 a(n) = 2 * n! * Sum_{k=0..n} k^(n-k) * binomial(2*n-k+2,k)/( (2*n-k+2)*(n-k)! ).
%o A377541 (PARI) a(n) = 2*n!*sum(k=0, n, k^(n-k)*binomial(2*n-k+2, k)/((2*n-k+2)*(n-k)!));
%Y A377541 Cf. A161633, A377545, A377551.
%Y A377541 Cf. A364980.
%K A377541 nonn
%O A377541 0,2
%A A377541 _Seiichi Manyama_, Oct 31 2024