cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377548 Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x*exp(x))^3 ).

This page as a plain text file.
%I A377548 #8 Nov 01 2024 09:32:54
%S A377548 1,3,36,789,25644,1112655,60584058,3975599271,305587795320,
%T A377548 26941234079259,2680537845979470,297158198268036963,
%U A377548 36325021999771692036,4854553774172042934279,704185171457954845825026,110192472149320674192100815,18503193203651913813111781488,3318723221891108953801703239731
%N A377548 Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x*exp(x))^3 ).
%H A377548 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A377548 E.g.f. satisfies A(x) = 1/(1 - x * A(x) * exp(x*A(x)))^3.
%F A377548 E.g.f.: B(x)^3, where B(x) is the e.g.f. of A365177.
%F A377548 a(n) = 3 * n! * Sum_{k=0..n} k^(n-k) * binomial(3*n+k+3,k)/( (3*n+k+3)*(n-k)! ).
%o A377548 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1-x*exp(x))^3)/x))
%o A377548 (PARI) a(n) = 3*n!*sum(k=0, n, k^(n-k)*binomial(3*n+k+3, k)/((3*n+k+3)*(n-k)!));
%Y A377548 Cf. A213644, A377546.
%Y A377548 Cf. A365177.
%K A377548 nonn
%O A377548 0,2
%A A377548 _Seiichi Manyama_, Oct 31 2024