cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377562 Numbers that have twice as many infinitary divisors as noninfinitary divisors.

Original entry on oeis.org

4, 9, 12, 18, 20, 25, 28, 32, 44, 45, 49, 50, 52, 60, 63, 68, 72, 75, 76, 84, 90, 92, 96, 98, 99, 108, 116, 117, 121, 124, 126, 132, 140, 147, 148, 150, 153, 156, 160, 164, 169, 171, 172, 175, 188, 198, 200, 204, 207, 212, 220, 224, 228, 234, 236, 242, 243, 244, 245
Offset: 1

Views

Author

Amiram Eldar, Nov 01 2024

Keywords

Comments

Numbers k such that A037445(k) = 2 * A348341(k).
Numbers k such that A037445(k)/A000005(k) = 2/3. For numbers k in A036537, all the divisors are infinitary divisors, so A037445(k)/A000005(k) = 1. For numbers k that are not in A036537, the largest possible ratio A037445(k)/A000005(k) is 2/3.
Numbers whose prime factorization has exactly one exponent of the form 3*2^k-1, with k >= 0, and the rest of the exponents, if there are any, are of the form 2^k-1, with k >= 1.
The asymptotic density of this sequence is d * Sum_{p prime} (Sum_{k>=0} 1/p^(3*2^k-1))/(1 + Sum_{k>=1} 1/p^(2^k-1)) = 0.23171917985739378623..., where d = A327839.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 2^DigitCount[e, 2, 1]/(e + 1); q[1] = False; q[n_] := Times @@ f @@@ FactorInteger[n] == 2/3; Select[Range[250], q]
  • PARI
    is(n) = {my(f = factor(n)); vecprod(apply(x -> (1 << hammingweight(x)) / (x+1), f[, 2])) == 2/3;}