A377566 Lexicographically earliest infinite sequence of distinct positive integers such that if j = a(n-1) is primorial, a(n) is the smallest prime not already a term, whereas if j is not primorial a(n) is the smallest novel number > j divisible by rad(j).
1, 2, 3, 6, 5, 10, 20, 30, 7, 14, 28, 42, 84, 126, 168, 210, 11, 22, 44, 66, 132, 198, 264, 330, 660, 990, 1320, 1650, 1980, 2310, 13, 26, 52, 78, 156, 234, 312, 390, 780, 1170, 1560, 1950, 2340, 2730, 5460, 8190, 10920, 13650, 16380, 19110, 21840, 24570, 27300, 30030, 17
Offset: 1
Keywords
Examples
If j = a(n-1) is squarefree then a(n) = 2*j. a(9) = prime(4) = 7, A101301(4) = 7, so there are 7+1 = 8 terms from 7 to A002110(4) = 210, namely: A060735(7+k-1)*7, k = 1,2,...8; so: 1*7,2*7,4*7,6*7,12*7,18*7,24*7,30*7 = 7,14,28,42,84,126,168,210.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Log log scatterplot of log_10 a(n), n = 1..2^17.
Programs
-
Mathematica
{{1, 2, 3, 6}}~Join~Table[Prime[m + 2]*If[n == 0, 1, Product[Prime[i], {i, n}]]*k, {m, 10}, {n, 0, m}, {k, 1 + Boole[n > 1], If[n == 0, 1, Prime[n + 1]]}] // Flatten (* faster for large datasets, or *) nn = 1000; c[] := False; m[] := 1; f[x_] := FactorInteger[x][[All, 1]]; Array[Set[{a[#], c[#], m[#]}, {#, True, 2}] &, 2]; j = 2; u = v = 3; Do[If[Or[IntegerQ@ Log2[j], And[EvenQ[j], Union@ Differences@ PrimePi[#] == {1}] ], k = v, k = Times @@ #; While[c[k m[k]], m[k]++]; k *= m[k]] &[f[j]]; Set[{a[n], c[k], j}, {k, True, k}]; If[k == u, While[c[u], u++]]; If[k == v, While[c[v], v = NextPrime[v] ] ], {n, 3, nn}]; Array[a, nn] (* Michael De Vlieger, Nov 04 2024 *)
Comments