A377571 a(n) is a n-digit number; for k = 1..n, its k-th digit is the most frequent k-th digit among n-digit prime numbers; in case of a tie, preference is given to the least digit.
2, 13, 157, 1223, 12127, 104993, 1000597, 10289067, 100080553, 1000447633, 10015225131
Offset: 1
Examples
For n = 4: the frequency of digits among 4-digit prime numbers, and the corresponding most frequent digits, are: Digit 0 1 2 3 4 5 6 7 8 9 Most frequent ----- --- ---- ---- ---- --- --- --- --- --- --- ------------- 1st 0 135* 127 120 119 114 117 107 110 112 1 2nd 112 95 116* 104 104 107 115 104 106 98 2 3rd 105 107 116* 110 103 106 104 101 105 104 2 4th 0 266 0 268* 0 0 0 262 0 265 3 - so a(4) = 1223.
Programs
-
PARI
a(n, base = 10) = { my (f = vector(n, k, vector(base))); forprime (p = base^(n-1), base^n-1, my (d = digits(p, base)); for (k = 1, n, f[k][1+d[k]]++;);); my (b = vector(n), i); for (k = 1, n, vecmax(f[k], &i); b[k] = i-1;); fromdigits(b, base); }
-
Python
from sympy import primerange def A377571(n): c = [[0]*10 for i in range(n)] for p in primerange(10**(n-1),10**n): for i, j in enumerate(str(p)): c[i][int(j)]+=1 return int(''.join(str(c[i].index(max(c[i]))) for i in range(n))) # Chai Wah Wu, Nov 06 2024
Comments