This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377623 #7 Dec 05 2024 09:26:14 %S A377623 15,5,5,3,3,13,7,1,5,1,1,3,1,1,7,1,1,7,1,1,3,1,7,1,1,9,5,3,1,1,1,5,3, %T A377623 1,1,5,1,1,1,3,1,5,1,1,1,1,1,1,1,1,3,1,3,1,3,3,1,5,3,1,3,5,1,5,7,1,9, %U A377623 1,3,1,1,1,5,5,1,1,1,3,1,1,1,1,1,1,1,9 %N A377623 a(n) is the number of iterations of x -> 6*x + 1 until (# composites reached) = (# primes reached), starting with prime(n). %C A377623 For a guide to related sequences, see A377609. %e A377623 Starting with prime(1) = 2, we have 6*2+1 = 13, then 6*13+1 = 79, etc., resulting in a chain 2, 13, 79, 475, 2851, 17107, 102643, 615859, 3695155, 22170931, 133025587, 798153523, 4788921139, 28733526835, 172401161011, 1034406966067 having 8 primes and 8 composites. Since every initial subchain has fewer composites than primes, a(1) = 16-1 = 15. (For more terms from the mapping x -> 6x-5, see A198849.) %t A377623 chain[{start_, u_, v_}] := If[CoprimeQ[u, v] && start*u + v != start, %t A377623 NestWhile[Append[#, u*Last[#] + v] &, {start}, ! %t A377623 Count[#, _?PrimeQ] == Count[#, _?(! PrimeQ[#] &)] &], {}]; %t A377623 chain[{Prime[1], 6, -5}] %t A377623 Map[Length[chain[{Prime[#], 6, -5}]] &, Range[1, 100]] - 1 %t A377623 (* _Peter J. C. Moses_, Oct 31 2024 *) %Y A377623 Cf. A377609, A198849. %K A377623 nonn %O A377623 1,1 %A A377623 _Clark Kimberling_, Nov 20 2024