This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377629 #11 Nov 03 2024 09:32:19 %S A377629 1,4,60,1644,66712,3611620,245284344,20071928212,1923688610400, %T A377629 211438912978692,26225665058289640,3624147718351890004, %U A377629 552229557439437084816,91990834731657653530180,16632301623786709606057368,3243982650658692575922907860,678932992008068232965498759104 %N A377629 Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x*exp(x))^4 ). %H A377629 <a href="/index/Res#revert">Index entries for reversions of series</a> %F A377629 E.g.f. satisfies A(x) = 1/(1 - x * A(x) * exp(x*A(x)))^4. %F A377629 E.g.f.: B(x)^4, where B(x) is the e.g.f. of A377631. %F A377629 a(n) = 4 * n! * Sum_{k=0..n} k^(n-k) * binomial(4*n+k+4,k)/( (4*n+k+4)*(n-k)! ). %o A377629 (PARI) a(n) = 4*n!*sum(k=0, n, k^(n-k)*binomial(4*n+k+4, k)/((4*n+k+4)*(n-k)!)); %Y A377629 Cf. A213644, A377546, A377548. %Y A377629 Cf. A377631, A377632. %K A377629 nonn %O A377629 0,2 %A A377629 _Seiichi Manyama_, Nov 02 2024