cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377630 Expansion of e.g.f. (1/x) * Series_Reversion( x/(1 + x*exp(x))^4 ).

This page as a plain text file.
%I A377630 #10 Nov 03 2024 09:32:15
%S A377630 1,4,52,1212,41512,1889700,107684664,7384011796,592485333472,
%T A377630 54488274328836,5652345176418280,653054114586249684,
%U A377630 83175314479016845584,11578838832843098353732,1749242011108507789948312,285034599164755404426493140,49833544890911336997795542464
%N A377630 Expansion of e.g.f. (1/x) * Series_Reversion( x/(1 + x*exp(x))^4 ).
%H A377630 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A377630 E.g.f. satisfies A(x) = (1 + x * A(x) * exp(x*A(x)))^4.
%F A377630 E.g.f.: B(x)^4, where B(x) is the e.g.f. of A364989.
%F A377630 a(n) = (n!/(n+1)) * Sum_{k=0..n} k^(n-k) * binomial(4*n+4,k)/(n-k)!.
%o A377630 (PARI) a(n) = n!*sum(k=0, n, k^(n-k)*binomial(4*n+4, k)/(n-k)!)/(n+1);
%Y A377630 Cf. A161633, A377553, A377554.
%Y A377630 Cf. A364989, A377633.
%K A377630 nonn
%O A377630 0,2
%A A377630 _Seiichi Manyama_, Nov 02 2024