cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377631 E.g.f. satisfies A(x) = 1/(1 - x * A(x)^4 * exp(x*A(x)^4)).

This page as a plain text file.
%I A377631 #11 Nov 03 2024 09:32:27
%S A377631 1,1,12,297,11380,593785,39304206,3155996557,298106913336,
%T A377631 32391139027185,3980284376962330,545806093612966021,
%U A377631 82628400115183659012,13688201250584241332809,2463065653446247669021398,478399017659163635014545405,99757368661138669886988396016
%N A377631 E.g.f. satisfies A(x) = 1/(1 - x * A(x)^4 * exp(x*A(x)^4)).
%F A377631 a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(4*n+k+1,k)/( (4*n+k+1)*(n-k)! ).
%o A377631 (PARI) a(n) = n!*sum(k=0, n, k^(n-k)*binomial(4*n+k+1, k)/((4*n+k+1)*(n-k)!));
%Y A377631 Cf. A377629, A377632.
%Y A377631 Cf. A213644, A364985, A365177.
%Y A377631 Cf. A364989.
%K A377631 nonn
%O A377631 0,3
%A A377631 _Seiichi Manyama_, Nov 02 2024