This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377657 #23 Nov 13 2024 17:22:00 %S A377657 1,0,2,0,3,3,0,9,10,4,0,27,90,21,5,0,81,850,371,36,6,0,243,8050,7077, %T A377657 1044,55,7,0,729,76250,135779,33300,2365,78,8,0,2187,722250,2606261, %U A377657 1070244,113311,4654,105,9,0,6561,6841250,50028755,34420356,5476405,312390,8295,136,10 %N A377657 Array read by ascending antidiagonals: A(n, k) = Sum_{j=0..k} tan(j*Pi/(1 + 2*k))^(2*n). %C A377657 Based on an observation made by _Fredrik Johansson_ about A376777, which is the main diagonal of this array. %F A377657 Row n of A091042(n, k) = binomial(2*n+1, 2*k) gives the polynomial Pe(n, x), with zeros in -tan(Pi/2*n+1)^2, -tan(2*Pi/2*n+1)^2, ..., -tan(n*Pi/2*n+1)^2. Let Pm(n, k, x) be the polynomial with zeros in (-tan(Pi/2*n+1)^2)^k, (-tan(2*Pi/2*n+1)^2)^k, ..., (-tan(n*Pi/2*n+1)^2)^k, then A(k, n) is the coefficient of X^(n-1) in the polynomial Pm(n, k, x). A way to do this calculation without evaluation of irrational numbers is to obtain the companion matrix M of the polynomial Pe(n, x), then A(k, n) = tr(M^k) (the trace of M^k). - _Thomas Scheuerle_, Nov 11 2024 %e A377657 Array begins %e A377657 [0] 1, 2, 3, 4, 5, 6, ... A000027 %e A377657 [1] 0, 3, 10, 21, 36, 55, ... A014105 %e A377657 [2] 0, 9, 90, 371, 1044, 2365, ... A377858 %e A377657 [3] 0, 27, 850, 7077, 33300, 113311, ... A376778 %e A377657 [4] 0, 81, 8050, 135779, 1070244, 5476405, ... %e A377657 [5] 0, 243, 76250, 2606261, 34420356, 264893255, ... %e A377657 [6] 0, 729, 722250, 50028755, 1107069876, 12813875437, ... %e A377657 [7] 0, 2187, 6841250, 960335173, 35607151476, 619859803695, ... %e A377657 . %e A377657 Seen as a triangle T(n, k) = A(n-k, k): %e A377657 [0] 1; %e A377657 [1] 0, 2; %e A377657 [2] 0, 3, 3; %e A377657 [3] 0, 9, 10, 4; %e A377657 [4] 0, 27, 90, 21, 5; %e A377657 [5] 0, 81, 850, 371, 36, 6; %e A377657 [6] 0, 243, 8050, 7077, 1044, 55, 7; %e A377657 [7] 0, 729, 76250, 135779, 33300, 2365, 78, 8; %e A377657 [8] 0, 2187, 722250, 2606261, 1070244, 113311, 4654, 105, 9; %p A377657 A := (n, k) -> add(tan(j*Pi/(1 + 2*k))^(2*n), j = 0..k): %p A377657 seq(print(seq(round(evalf(A(n, k), 32)), k = 0..6)), n = 0..7); %o A377657 (PARI) %o A377657 A(n, k) = {trace(matcompanion(sum(m=0, k, x^m*binomial(2*k+1, 2*(k-m))*(-1)^(m+1)))^n)+(n==0) } \\ _Thomas Scheuerle_, Nov 11 2024 %Y A377657 Rows: A000027, A014105, A377858, A376778. %Y A377657 Columns: A376478. %Y A377657 Cf. A376777 (main diagonal), A377658 (antidiagonal sums). %Y A377657 Cf. A091042. %K A377657 nonn,tabl %O A377657 0,3 %A A377657 _Peter Luschny_, Nov 10 2024