This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377661 #14 Nov 12 2024 20:20:59 %S A377661 1,2,1,5,8,1,16,45,18,1,65,256,180,32,1,326,1625,1600,500,50,1,1957, %T A377661 11736,14625,6400,1125,72,1,13700,95893,143766,79625,19600,2205,98,1, %U A377661 109601,876800,1534288,1022336,318500,50176,3920,128,1 %N A377661 Triangle read by rows: T(n, k) = e*Gamma(n - k + 1, 1)*binomial(n, k)^2. %F A377661 T(n, k) = binomial(n, k)*Sum_{j=k..n} n!/(k!*(j-k)!). %F A377661 T(n, k) = binomial(n, k)^2 * KummerU(k - n, k - n, 1). %F A377661 T(n, k) = binomial(n, k) * A073107(n, k). %e A377661 Triangle starts: %e A377661 [0] 1; %e A377661 [1] 2, 1; %e A377661 [2] 5, 8, 1; %e A377661 [3] 16, 45, 18, 1; %e A377661 [4] 65, 256, 180, 32, 1; %e A377661 [5] 326, 1625, 1600, 500, 50, 1; %e A377661 [6] 1957, 11736, 14625, 6400, 1125, 72, 1; %e A377661 [7] 13700, 95893, 143766, 79625, 19600, 2205, 98, 1; %e A377661 [8] 109601, 876800, 1534288, 1022336, 318500, 50176, 3920, 128, 1; %p A377661 T := (n, k) -> exp(1)*GAMMA(n - k + 1, 1)*binomial(n, k)^2: %p A377661 seq(seq(simplify(T(n, k)), k = 0..n), n=0..8); %p A377661 # Alternative: %p A377661 A377661 := (n, k) -> n!*binomial(n,k)*add(1/(k!*(j-k)!), j = k..n): %p A377661 for n from 0 to 8 do seq(A377661(n, k), k = 0..n) od; %p A377661 # Or: %p A377661 T := (n, k) -> binomial(n, k)^2 * KummerU(k - n, k - n, 1): %p A377661 for n from 0 to 8 do seq(simplify(T(n, k)), k= 0..n) od; %t A377661 T[n_, k_] := E Binomial[n, k]^2 Gamma[1 - k + n, 1]; %t A377661 Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten %o A377661 (Python) %o A377661 from math import comb, isqrt, factorial %o A377661 def A377661(n): %o A377661 a = (m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)) %o A377661 b = n-comb(a+1,2) %o A377661 fa, fb = factorial(a), factorial(b) %o A377661 return comb(a,b)*sum(fa//(fb*factorial(j-b)) for j in range(b,a+1)) # _Chai Wah Wu_, Nov 12 2024 %Y A377661 Cf. A000522 (column 0), A001105 (subdiagonal), A377662 (row sums), A073107. %K A377661 nonn,tabl %O A377661 0,2 %A A377661 _Peter Luschny_, Nov 03 2024