A377666 Array read by ascending antidiagonals: A(n, k) = Sum_{j = 0..k} binomial(k, j) * Euler(j, 0) *(2*n)^j.
1, 1, 1, 1, 0, 1, 1, -1, -1, 1, 1, -2, -3, 0, 1, 1, -3, -5, 11, 5, 1, 1, -4, -7, 46, 57, 0, 1, 1, -5, -9, 117, 205, -361, -61, 1, 1, -6, -11, 236, 497, -3362, -2763, 0, 1, 1, -7, -13, 415, 981, -15123, -22265, 24611, 1385, 1
Offset: 0
Examples
Array A(n, k) starts: [0] 1, 1, 1, 1, 1, 1, 1, ... A000012 [1] 1, 0, -1, 0, 5, 0, -61, ... A122045 [2] 1, -1, -3, 11, 57, -361, -2763, ... A212435 [3] 1, -2, -5, 46, 205, -3362, -22265, ... A225147 [4] 1, -3, -7, 117, 497, -15123, -95767, ... A156201 [5] 1, -4, -9, 236, 981, -47524, -295029, ... A377665 [6] 1, -5, -11, 415, 1705, -120125, -737891, ... [7] 1, -6, -13, 666, 2717, -262086, -1599793, ...
Links
- Peter Luschny, Generalized Eulerian polynomials. (See last row of the table.)
Crossrefs
Programs
-
Maple
GHZeta := (k, n, m) -> m^(k+1)*Zeta(0, -k, 1/(m*n)): A := (n, k) -> ifelse(n = 0, 1, n^k*(GHZeta(k, n, 4) - GHZeta(k, n, 2))): for n from 0 to 7 do lprint(seq(A(n, k), k = 0..7)) od; # Alternative: P := proc(n, k) local j; 2*I*(1 + add(binomial(k, j)*polylog(-j, I)*n^j, j = 0..k)) end: A := n -> Im(P(n, k)): seq(lprint(seq(A(n, k), k = 0..7)), n = 0..7); # Computing the transpose using polynomials P from A363393. P := n -> add(binomial(n + 1, j)*bernoulli(j, 1)*(4^j - 2^j)*x^(j-1), j = 0..n+1)/(n + 1): Column := (k, n) -> subs(x = -n, P(k)): for k from 0 to 6 do seq(Column(k, n), n = 0..9) od; # According to the definition: A := (n, k) -> local j; add(binomial(k, j)*euler(j, 0)*(2*n)^j, j = 0..k): seq(lprint(seq(A(n, k), k = 0..6)), n = 0..7);
-
Mathematica
A[n_, k_] := n^k (4^(k+1) HurwitzZeta[-k, 1/(4n)] - 2^(k + 1) HurwitzZeta[-k, 1/(2n)]);
-
SageMath
from mpmath import * mp.dps = 32; mp.pretty = True def T(n, k): p = 2*I*(1+sum(binomial(k, j)*polylog(-j, I)*n^j for j in range(k+1))) return int(imag(p)) for n in range(8): print([T(n, k) for k in range(7)])
Formula
A(n, k) = n^k*(GHZeta(k, n, 4) - GHZeta(k, n, 2)) where GHZeta(k, n, m) = m^(k+1) * HurwitzZeta(-k, 1/(m*n)) for n > 0, and T(0, k) = 1.
A(n, k) = Im(P(n, k)) where P(n, k) = 2*i*(1 + Sum_{j=0..k} binomial(k, j)*polylog(-j, i)*n^j).
A(n, k) = substitute(x = -n, P(k, x)) where P(n, x) = (1/(n + 1)) * Sum_{j=0..n+1} binomial(n + 1, j) * Bernoulli(j, 1) * (4^j - 2^j)*x^(j-1).