cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377670 Number of subwords of the form UDD in nondecreasing Dyck paths of length 2n.

This page as a plain text file.
%I A377670 #42 Mar 05 2025 02:06:24
%S A377670 0,0,1,4,14,45,138,411,1200,3454,9836,27779,77938,217493,604222,
%T A377670 1672246,4613030,12689265,34817418,95320335,260436588,710278318,
%U A377670 1933906496,5257545599,14273273314,38699274665,104799960058,283487736166,766045036730,2067997219629,5577597593466,15030365074659,40470488092008
%N A377670 Number of subwords of the form UDD in nondecreasing Dyck paths of length 2n.
%C A377670 A Dyck path is nondecreasing if the y-coordinates of its valleys form a nondecreasing sequence.
%C A377670 a(n) also represents the number of subwords of the form UUDDD in nondecreasing Dyck paths of length 2n.
%H A377670 E. Barcucci, A. Del Lungo, S. Fezzi, and R. Pinzani, <a href="http://dx.doi.org/10.1016/S0012-365X(97)82778-1">Nondecreasing Dyck paths and q-Fibonacci numbers</a>, Discrete Math., 170 (1997), 211-217.
%H A377670 Éva Czabarka, Rigoberto Flórez, Leandro Junes and José L. Ramírez, <a href="https://doi.org/10.1016/j.disc.2018.06.032">Enumerations of peaks and valleys on non-decreasing Dyck paths</a>, Discrete Math., Vol. 341, No. 10 (2018), pp. 2789-2807. See p. 2798.
%H A377670 Rigoberto Flórez, Leandro Junes, and José L. Ramírez, <a href="https://doi.org/10.1016/j.disc.2019.06.018">Enumerating several aspects of non-decreasing Dyck paths</a>, Discrete Mathematics, Vol. 342, Issue 11 (2019), 3079-3097. See page 3092.
%H A377670 Rigoberto Flórez, Leandro Junes, Luisa M. Montoya, and José L. Ramírez, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL28/Florez/florez51.html">Counting Subwords in Non-Decreasing Dyck Paths</a>, J. Int. Seq. (2025) Vol. 28, Art. No. 25.1.6. See pp. 6, 17, 19.
%H A377670 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (8,-23,28,-13,2).
%F A377670 a(n) = (2*F(2*n-3) + n*L(2*n-3) + 2*L(2*n-2) - 5*2^(n-2))/5 for n>=2, where F(n) = A000045(n) and L(n) = A000032(n).
%F A377670 G.f.: x^2*(1-x)*(x^3-2*x^2+3*x-1)/((2*x-1)*(x^2-3*x+1)^2). - _Alois P. Heinz_, Nov 03 2024
%F A377670 E.g.f.: (4*exp(3*x/2)*(5*(10 - x)*cosh(sqrt(5)*x/2) - sqrt(5)*(18 - 5*x)*sinh(sqrt(5)*x/2)) - 25*(7 + exp(2*x) + 2*x))/100. - _Stefano Spezia_, Mar 04 2025
%t A377670 Table[If[n<2, 0,(2*Fibonacci[2n-3] + n*LucasL[2n-3]+2 LucasL[2n-2]-5*2^(n-2))/5], {n,0,20}]
%Y A377670 Cf. A000032, A000045, A377679, A375995.
%K A377670 nonn,easy
%O A377670 0,4
%A A377670 _Rigoberto Florez_, Nov 03 2024