cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377679 Number of subwords of the form DDD in nondecreasing Dyck paths of length 2n.

This page as a plain text file.
%I A377679 #28 Jul 18 2025 01:53:08
%S A377679 0,0,0,1,6,26,97,333,1085,3411,10448,31376,92773,270907,783003,
%T A377679 2243815,6383550,18048494,50755897,142067625,396014681,1099863867,
%U A377679 3044737100,8404071596,23135752141,63538808311,174120317367,476207551183
%N A377679 Number of subwords of the form DDD in nondecreasing Dyck paths of length 2n.
%C A377679 A Dyck path is nondecreasing if the y-coordinates of its valleys form a nondecreasing sequence.
%H A377679 E. Barcucci, A. Del Lungo, S. Fezzi, and R. Pinzani, <a href="http://dx.doi.org/10.1016/S0012-365X(97)82778-1">Nondecreasing Dyck paths and q-Fibonacci numbers</a>, Discrete Math., 170 (1997), 211-217.
%H A377679 Éva Czabarka, Rigoberto Flórez, Leandro Junes and José L. Ramírez, <a href="https://doi.org/10.1016/j.disc.2018.06.032">Enumerations of peaks and valleys on non-decreasing Dyck paths</a>, Discrete Math., Vol. 341, No. 10 (2018), pp. 2789-2807. See p. 2798.
%H A377679 Rigoberto Flórez, Leandro Junes, Luisa M. Montoya, and José L. Ramírez, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL28/Florez/florez51.html">Counting Subwords in Non-Decreasing Dyck Paths</a>, J. Int. Seq. (2025) Vol. 28, Art. No. 25.1.6. See pp. 6, 19.
%H A377679 Rigoberto Flórez, Leandro Junes, and José L. Ramírez, <a href="https://doi.org/10.1016/j.disc.2019.06.018">Enumerating several aspects of non-decreasing Dyck paths</a>, Discrete Mathematics, Vol. 342, Issue 11 (2019), 3079-3097. See page 3092.
%H A377679 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (8,-23,28,-13,2).
%F A377679 a(n) = n*F(2*n-3) - L(2*n-2) + 2^(n-2) for n>=2, where F(n) = A000045(n) and L(n) = A000032(n).
%F A377679 G.f.: x^3*(1 - 2*x + x^2 - x^3)/((1 - 2*x)*(1 - 3*x + x^2)^2).
%t A377679 Table[If[n<2,0,n Fibonacci[2 n-3]-LucasL[2 n-2]+2^(n-2)],{n,0,30}]
%Y A377679 Cf. A000032, A000045, A377670, A375995.
%K A377679 nonn,easy
%O A377679 0,5
%A A377679 _Rigoberto Florez_, Nov 03 2024