cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377686 E.g.f. satisfies A(x) = (1 - x * log(1 - x*A(x)))^3.

This page as a plain text file.
%I A377686 #11 Nov 04 2024 09:08:48
%S A377686 1,0,6,9,312,2070,53892,797580,21541440,508313232,15840608400,
%T A377686 502075577520,18473543511552,722232734446080,31135359390952320,
%U A377686 1435933667363963040,71392285554374384640,3782802775152784320000,213512536856209839796224,12767785967296083820561920
%N A377686 E.g.f. satisfies A(x) = (1 - x * log(1 - x*A(x)))^3.
%F A377686 E.g.f.: B(x)^3, where B(x) is the e.g.f. of A377687.
%F A377686 a(n) = 3 * n! * Sum_{k=0..floor(n/2)} (3*n-3*k+2)! * |Stirling1(n-k,k)|/( (n-k)! * (3*n-4*k+3)! ).
%o A377686 (PARI) a(n) = 3*n!*sum(k=0, n\2, (3*n-3*k+2)!*abs(stirling(n-k, k, 1))/((n-k)!*(3*n-4*k+3)!));
%Y A377686 Cf. A371117, A377685.
%Y A377686 Cf. A377391, A377687.
%K A377686 nonn
%O A377686 0,3
%A A377686 _Seiichi Manyama_, Nov 04 2024