This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377695 #5 Nov 06 2024 04:40:37 %S A377695 8,5,0,3,9,6,6,4,5,5,9,3,7,0,8,8,1,5,5,4,6,7,9,6,5,1,0,1,2,6,5,4,1,5, %T A377695 9,6,1,0,7,1,2,1,0,9,5,4,2,3,9,2,3,7,8,7,6,6,9,7,1,7,3,7,7,2,2,6,2,2, %U A377695 7,0,1,4,6,0,4,0,7,0,1,2,6,1,3,5,3,2,2,8,2,1 %N A377695 Decimal expansion of the volume of a truncated dodecahedron with unit edge length. %H A377695 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TruncatedDodecahedron.html">Truncated Dodecahedron</a>. %H A377695 Wikipedia, <a href="https://en.wikipedia.org/wiki/Truncated_dodecahedron">Truncated dodecahedron</a>. %F A377695 Equals (5/12)*(99 + 47*sqrt(5)) = (5/12)*(99 + 47*A002163). %e A377695 85.039664559370881554679651012654159610712109542... %t A377695 First[RealDigits[5/12*(99 + 47*Sqrt[5]), 10, 100]] (* or *) %t A377695 First[RealDigits[PolyhedronData["TruncatedDodecahedron", "Volume"], 10, 100]] %Y A377695 Cf. A377694 (surface area), A377696 (circumradius), A377697 (midradius), A377698 (Dehn invariant, negated). %Y A377695 Cf. A102769 (analogous for a regular dodecahedron). %Y A377695 Cf. A002163. %K A377695 nonn,cons,easy %O A377695 2,1 %A A377695 _Paolo Xausa_, Nov 04 2024