This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377696 #5 Nov 06 2024 04:40:44 %S A377696 2,9,6,9,4,4,9,0,1,5,8,6,3,3,9,8,4,6,7,0,4,2,1,6,6,6,9,5,6,9,2,5,9,7, %T A377696 9,6,3,6,0,0,7,4,7,7,0,0,3,2,8,0,9,6,6,9,9,8,3,7,8,6,2,7,7,6,1,2,2,1, %U A377696 0,6,9,2,4,4,8,8,8,3,7,5,2,0,9,0,7,9,6,4,7,1 %N A377696 Decimal expansion of the circumradius of a truncated dodecahedron with unit edge length. %H A377696 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TruncatedDodecahedron.html">Truncated Dodecahedron</a>. %H A377696 Wikipedia, <a href="https://en.wikipedia.org/wiki/Truncated_dodecahedron">Truncated dodecahedron</a>. %F A377696 Equals sqrt(74 + 30*sqrt(5))/4 = sqrt(74 + 30*A002163)/4. %e A377696 2.9694490158633984670421666956925979636007477003... %t A377696 First[RealDigits[Sqrt[74 + 30*Sqrt[5]]/4, 10, 100]] (* or *) %t A377696 First[RealDigits[PolyhedronData["TruncatedDodecahedron", "Circumradius"], 10, 100]] %Y A377696 Cf. A377694 (surface area), A377695 (volume), A377697 (midradius), A377698 (Dehn invariant, negated). %Y A377696 Cf. A179296 (analogous for a regular dodecahedron). %Y A377696 Cf. A002163. %K A377696 nonn,cons,easy %O A377696 1,1 %A A377696 _Paolo Xausa_, Nov 04 2024