cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377697 Decimal expansion of the midradius of a truncated dodecahedron with unit edge length.

This page as a plain text file.
%I A377697 #7 Nov 06 2024 04:40:51
%S A377697 2,9,2,7,0,5,0,9,8,3,1,2,4,8,4,2,2,7,2,3,0,6,8,8,0,2,5,1,5,4,8,4,5,7,
%T A377697 1,7,6,5,8,0,4,6,3,7,6,9,7,0,8,6,4,4,2,9,3,2,0,3,1,7,2,9,3,4,0,5,7,8,
%U A377697 9,0,6,9,4,2,2,8,3,5,3,6,7,4,5,6,0,8,1,0,8,0
%N A377697 Decimal expansion of the midradius of a truncated dodecahedron with unit edge length.
%H A377697 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TruncatedDodecahedron.html">Truncated Dodecahedron</a>.
%H A377697 Wikipedia, <a href="https://en.wikipedia.org/wiki/Truncated_dodecahedron">Truncated dodecahedron</a>.
%F A377697 Equals (5 + 3*sqrt(5))/4 = (5 + A010499)/4.
%F A377697 Equals A205769 - 1/2.
%e A377697 2.9270509831248422723068802515484571765804637697...
%t A377697 First[RealDigits[(5 + Sqrt[45])/4, 10, 100]] (* or *)
%t A377697 First[RealDigits[PolyhedronData["TruncatedDodecahedron", "Midradius"], 10, 100]]
%Y A377697 Cf. A377694 (surface area), A377695 (volume), A377696 (circumradius), A377698 (Dehn invariant, negated).
%Y A377697 Cf. A239798 (analogous for a regular dodecahedron).
%Y A377697 Cf. A010499, A205769.
%K A377697 nonn,cons,easy
%O A377697 1,1
%A A377697 _Paolo Xausa_, Nov 05 2024