A377702 Perfect-powers except for powers of 2.
9, 25, 27, 36, 49, 81, 100, 121, 125, 144, 169, 196, 216, 225, 243, 289, 324, 343, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1000, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1600, 1681, 1728, 1764, 1849, 1936, 2025, 2116, 2187, 2197
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 9: {2,2} 25: {3,3} 27: {2,2,2} 36: {1,1,2,2} 49: {4,4} 81: {2,2,2,2} 100: {1,1,3,3} 121: {5,5} 125: {3,3,3} 144: {1,1,1,1,2,2} 169: {6,6} 196: {1,1,4,4} 216: {1,1,1,2,2,2} 225: {2,2,3,3} 243: {2,2,2,2,2} 289: {7,7} 324: {1,1,2,2,2,2}
Crossrefs
Programs
-
Mathematica
Select[Range[1000],GCD@@FactorInteger[#][[All,2]]>1&&!IntegerQ[Log[2,#]]&]
-
Python
from sympy import mobius, integer_nthroot def A377702(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n-2+x+(l:=x.bit_length())+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,l))) return bisection(f,n+1,n+1) # Chai Wah Wu, Nov 06 2024
Comments