A377712 a(n) is the least divisor of n with as many decimal digits as n.
1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 10, 21, 11, 23, 12, 25, 13, 27, 14, 29, 10, 31, 16, 11, 17, 35, 12, 37, 19, 13, 10, 41, 14, 43, 11, 15, 23, 47, 12, 49, 10, 17, 13, 53, 18, 11, 14, 19, 29, 59, 10, 61, 31, 21, 16, 13, 11, 67
Offset: 1
Examples
For n = 42: the divisors of 42 are 1, 2, 3, 6, 7, 14, 21, 42; the least divisor with 2 digits is 14, so a(42) = 14.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local d,t; t:= ilog10(n); min(select(d -> ilog10(d)=t, numtheory:-divisors(n))) end proc: map(f, [$1..100]); # Robert Israel, Nov 06 2024
-
Mathematica
s={};Do[m=0;d=Divisors[n];Until[Length[IntegerDigits[d[[m]]]]==Length[IntegerDigits[n]],m++];AppendTo[s,d[[m]]],{n,67}];s (* James C. McMahon, Nov 06 2024 *)
-
PARI
a(n, base = 10) = { my (w = #digits(n, base)); forstep (x = base-1, 1, -1, if (n%x==0 && #digits(n/x)==w, return (n/x););); }
-
Python
def A377712(n): return n//next(d for d in range(n//10**(len(str(n))-1),0,-1) if not n%d) # Chai Wah Wu, Nov 06 2024
Formula
1 <= n/a(n) <= 9.