This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377724 #13 Nov 14 2024 08:23:28 %S A377724 5,437,13709,40169,574133 %N A377724 Smallest k such that 4^(5*4^n) - k is a safe prime. %C A377724 a(5) > 2*10^7. - _Michael S. Branicky_, Nov 09 2024 %t A377724 Table[m = 4; %t A377724 k = 0; Monitor[ %t A377724 Parallelize[ %t A377724 While[True, %t A377724 If[And[PrimeQ[m^((m + 1)*m^n) - k], %t A377724 PrimeQ[((m^((m + 1)*m^n) - k) - 1)/2]], Break[]]; k++]; k],k], {n, 0, 5}] %o A377724 (PARI) a(n) = {my(k=0); while (!(isprime(p=4^(5*4^n) - k) && isprime((p-1)/2)), k++); k;} %o A377724 (Python) %o A377724 from sympy import isprime, prevprime %o A377724 def A(n): %o A377724 m = 4**(5*4**n) %o A377724 p = prevprime(m) %o A377724 while not isprime((p-1)//2): %o A377724 p = prevprime(p) %o A377724 return m-p # %Y A377724 Cf. A005385, A057821, A181356, A335313, A376946. %K A377724 nonn,more %O A377724 0,1 %A A377724 _J.W.L. (Jan) Eerland_, Nov 05 2024