cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377726 Lengths of the long leg of the unique primitive Pythagorean triple (x,y,z) such that (x-y+z)/2 is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

This page as a plain text file.
%I A377726 #17 Jul 14 2025 22:17:02
%S A377726 84,3280,113764,3878112,131820084,4478459440,152138450884,
%T A377726 5168244315840,175568258308884,5964153062868112,202605638937276964,
%U A377726 6882627588628286880,233806732478308836084,7942546277279354556400,269812766698548756220804,9165691521493946935370112
%N A377726 Lengths of the long leg of the unique primitive Pythagorean triple (x,y,z) such that (x-y+z)/2 is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
%D A377726 Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.
%F A377726 a(n) = 2 * A002315(n) * (A002315(n) - 1).
%e A377726 Triangles begins:
%e A377726   n=1:     13,        84,        85;
%e A377726   n=2:     81,      3280,      3281;
%e A377726   n=3:    477,    113764,    113765;
%e A377726   ...
%e A377726 This sequence gives the middle column.
%t A377726 ra[n_]:=ra[n]=Module[{ra},ra=((1+Sqrt[2])^(2n+1)-(Sqrt[2]-1)^(2n+1))/2;{2ra-1,2ra^2-2ra,2ra^2-2ra+1}];exradio={};Do[exradio=Join[exradio,FullSimplify[ra[n]]],{n,0,10}];exradio
%Y A377726 Cf. A002315, A377016, A377017, A377725, A362545 (short legs).
%K A377726 nonn,easy
%O A377726 1,1
%A A377726 _Miguel-Ángel Pérez García-Ortega_, Nov 05 2024