cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377729 a(n) is the smallest number which can be represented as the sum of n distinct nonzero n-gonal numbers in exactly 2 ways.

This page as a plain text file.
%I A377729 #27 Feb 16 2025 08:34:07
%S A377729 19,90,162,299,509,816,1248,1837,2619,3634,4926,6543,8537,10964,13884,
%T A377729 17361,21463,26262,31834,38259,45621,54008,63512,74229,86259,99706,
%U A377729 114678,131287,149649,169884,192116,216473,243087,272094,303634,337851,374893,414912,458064,504509
%N A377729 a(n) is the smallest number which can be represented as the sum of n distinct nonzero n-gonal numbers in exactly 2 ways.
%C A377729 From _David A. Corneth_, Nov 06 2024: (Start)
%C A377729 a(n) <= (n^4 - 2*n^3 + 38*n^2 - 85*n + 72)/6 for n >= 5. Proof:
%C A377729 A polygonal number is of the form P(m, n) = m/2 * ((n - 2) * m - n + 4).
%C A377729 We have P(n - 5, n) + P(n - 4, n) + P(n, n) = P(n - 6, n) + P(n - 2, n) + P(n - 1, n) = (3*n^3 - 18*n^2 + 21*n) / 2.
%C A377729 This lets us find the upper bound on a(n) by making two lists from 1 through n + 3. From one of them we remove n-2, n-1 and n + 3 and from the other we remove n-3, n+1 and n+2. The sum for remaining polygonal numbers is the same giving an upper bound on a(n) which turns out to be (n^4 - 2*n^3 + 38*n^2 - 85*n + 72)/6 (End)
%H A377729 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PolygonalNumber.html">Polygonal Number</a>
%F A377729 From _David A. Corneth_, Nov 06 2024: (Start)
%F A377729 a(n) >= A006484(n).
%F A377729 Conjecture: a(n) = (n^4 - 2*n^3 + 38*n^2 - 85*n + 72)/6 for n >= 5. (End)
%F A377729 Conjectured g.f.: x^3*(19 - 5*x - 98*x^2 + 199*x^3 - 171*x^4 + 72*x^5 - 12*x^6) / (1 - x)^5.
%e A377729 a(3) = 19 = 1 + 3 + 15 = 3 + 6 + 10.
%e A377729 a(4) = 90 = 1^2 + 2^2 + 6^2 + 7^2 = 1^2 + 3^2 + 4^2 + 8^2.
%Y A377729 Cf. A006484, A025377, A057145, A350405, A374144, A374256, A374287.
%K A377729 nonn
%O A377729 3,1
%A A377729 _Ilya Gutkovskiy_, Nov 05 2024
%E A377729 a(12)-a(36) from _Michael S. Branicky_, Nov 06 2024
%E A377729 More terms from _David A. Corneth_, Nov 10 2024