cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A377732 Numbers k such that max{d|k, d <= sqrt(k)} + min{d|k, d >= sqrt(k)} is a square.

Original entry on oeis.org

3, 4, 14, 18, 20, 39, 46, 55, 60, 63, 64, 94, 114, 136, 150, 154, 155, 156, 158, 183, 203, 243, 258, 275, 291, 295, 299, 308, 315, 320, 323, 324, 328, 334, 444, 446, 490, 544, 558, 570, 579, 580, 583, 584, 588, 594, 598, 600, 695, 710, 718, 799, 855, 878, 903, 904, 938, 943, 955, 959, 975, 978, 979, 988, 999
Offset: 1

Views

Author

Amiram Eldar, Nov 05 2024

Keywords

Comments

Numbers k such that A063655(k) = A033676(k) + A033677(k) is a square.
The square terms of this sequence are the positive numbers of the form A141046(m) = 4*m^4.

Crossrefs

Subsequences: A141046 \ {0}, A377733, A377736.

Programs

  • Mathematica
    q[k_] := If[IntegerQ[Sqrt[k]], IntegerQ[Sqrt[2*Sqrt[k]]], Module[{d = Divisors[k], nh}, nh = Length[d]/2; IntegerQ[Sqrt[d[[nh]] + d[[nh + 1]]]]]]; Select[Range[1000], q]
  • PARI
    is(k) = if(issquare(k), issquare(2 * sqrtint(k)), my(d = divisors(k), nh = #d/2); issquare(d[nh] + d[nh + 1]));
    
  • Python
    from itertools import count, islice
    from sympy import divisors
    from sympy.ntheory.primetest import is_square
    def A377732_gen(startvalue=1): # generator of terms >= startvalue
        for k in count(max(startvalue,1)):
            d = (a:=divisors(k))[len(a)-1>>1]
            if is_square(d+k//d):
                yield k
    A377732_list = list(islice(A377732_gen(),30)) # Chai Wah Wu, Nov 06 2024

Formula

c * x^(3/4) / log(x) < R(x) < 2 * c * x^(3/4) / log(x) for sufficiently large x, where R(x) is the number of terms that do not exceed x, and c = A377731 (De Koninck et al., 2024).

A377736 Numbers k such that k, k+1 and k+2 are all terms in A377732.

Original entry on oeis.org

154, 282674, 3003599678
Offset: 1

Views

Author

Amiram Eldar, Nov 05 2024

Keywords

References

  • 144544673718847655 and 10931129469745989328319 are also terms (De Koninck et al., 2024, section 6).

Crossrefs

Subsequence of A377732 and A377733.

Programs

  • PARI
    is1(k) = if(issquare(k), issquare(2 * sqrtint(k)), my(d = divisors(k), nh = #d/2); issquare(d[nh] + d[nh + 1]));
    lista(kmax) = {my(q1 = is1(1), q2 = is1(2), q3); for(k = 3, kmax, q3 = is1(k); if(q1 && q2 && q3, print1(k-2, ", ")); q1 = q2; q2 = q3);}
Showing 1-2 of 2 results.