cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377737 Expansion of e.g.f. (1/x) * Series_Reversion( x/(1 - log(1-2*x) / 2) ).

This page as a plain text file.
%I A377737 #23 Nov 08 2024 08:04:29
%S A377737 1,1,4,32,392,6504,136464,3466224,103425664,3546396288,137423600640,
%T A377737 5939224680960,283254408582144,14777481937449984,837175325044101120,
%U A377737 51182161648716349440,3358765321328869539840,235492308312669671424000,17568539556367396687183872
%N A377737 Expansion of e.g.f. (1/x) * Series_Reversion( x/(1 - log(1-2*x) / 2) ).
%H A377737 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A377737 a(n) = n! * Sum_{k=0..n} 2^(n-k) * |Stirling1(n,k)|/(n-k+1)!.
%o A377737 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x/(1-log(1-2*x)/2))/x))
%o A377737 (PARI) a(n) = n!*sum(k=0, n, 2^(n-k)*abs(stirling(n, k, 1))/(n-k+1)!);
%Y A377737 Cf. A138013, A377803.
%Y A377737 Cf. A201595, A227917, A370938, A377789.
%K A377737 nonn
%O A377737 0,3
%A A377737 _Seiichi Manyama_, Nov 08 2024