This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377738 #10 Nov 20 2024 14:11:55 %S A377738 2,3,5,6,8,7,9,13,10,11,14,17,21,15,16,18,19,22,20,25,34,23,24,26,27, %T A377738 29,28,30,35,31,32,38,46,55,36,37,39,40,42,41,43,47,44,45,48,51,56,49, %U A377738 50,52,53,59,54,67,89,57,58,60,61,63,62,64,68,65,66,69,72 %N A377738 a(n) is the least m > n such that the Zeckendorf representations of m and n have the same number of terms. %C A377738 A permutation of the numbers missing from A027941. %C A377738 To compute a(n): %C A377738 - in the Zeckendorf representation of n, %C A377738 - locate the rightmost term A000045(k) such that A000045(k+2) is not a term, %C A377738 - replace A000045(k) by A000045(k+1), %C A377738 - replace the c terms < A000045(k) by A027941(c). %H A377738 Rémy Sigrist, <a href="/A377738/b377738.txt">Table of n, a(n) for n = 1..10000</a> %H A377738 Rémy Sigrist, <a href="/A377738/a377738.gp.txt">PARI program</a> %H A377738 <a href="/index/Z#Zeckendorf">Index entries for sequences related to Zeckendorf expansion of n</a> %F A377738 a(A000045(k)) = A000045(k+1) for any k >= 2. %e A377738 The first terms, alongside their Zeckendorf representations, are: %e A377738 n a(n) A014417(n) A014417(a(n)) %e A377738 -- ---- ---------- ------------- %e A377738 1 2 1 10 %e A377738 2 3 10 100 %e A377738 3 5 100 1000 %e A377738 4 6 101 1001 %e A377738 5 8 1000 10000 %e A377738 6 7 1001 1010 %e A377738 7 9 1010 10001 %e A377738 8 13 10000 100000 %e A377738 9 10 10001 10010 %e A377738 10 11 10010 10100 %e A377738 11 14 10100 100001 %e A377738 12 17 10101 100101 %e A377738 13 21 100000 1000000 %e A377738 14 15 100001 100010 %o A377738 (PARI) \\ See Links section. %Y A377738 Cf. A000045, A003714, A007895, A014417, A027941, A057168, A228915. %K A377738 nonn,base %O A377738 1,1 %A A377738 _Rémy Sigrist_, Nov 05 2024