This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377751 #9 Feb 05 2025 10:25:11 %S A377751 5,5,2,8,7,7,3,0,7,5,8,1,2,2,7,3,9,2,3,6,3,9,8,6,1,6,9,3,8,8,6,1,2,1, %T A377751 9,5,3,0,9,8,6,6,4,7,3,6,5,8,2,3,9,0,1,5,3,5,9,1,2,1,4,5,3,8,8,1,6,3, %U A377751 0,9,9,9,5,0,6,0,6,4,0,2,6,6,8,7,0,4,9,5,4,8 %N A377751 Decimal expansion of the volume of a truncated icosahedron with unit edge length. %H A377751 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TruncatedIcosahedron.html">Truncated Icosahedron</a>. %H A377751 Wikipedia, <a href="https://en.wikipedia.org/wiki/Truncated_icosahedron">Truncated icosahedron</a>. %H A377751 <a href="/index/Al#algebraic_02">Index entries for algebraic numbers, degree 2</a>. %F A377751 Equals (125 + 43*sqrt(5))/4 = (125 + 43*A002163)/4. %e A377751 55.28773075812273923639861693886121953098664736582... %t A377751 First[RealDigits[(125 + 43*Sqrt[5])/4, 10, 100]] (* or *) %t A377751 First[RealDigits[PolyhedronData["TruncatedIcosahedron", "Volume"], 10, 100]] %o A377751 (PARI) (125 + 43*sqrt(5))/4 \\ _Charles R Greathouse IV_, Feb 05 2025 %Y A377751 Cf. A377750 (surface area), A377752 (circumradius), A205769 (midradius + 1), A377787 (Dehn invariant). %Y A377751 Cf. A102208 (analogous for a regular icosahedron). %Y A377751 Cf. A002163. %K A377751 nonn,cons,easy %O A377751 2,1 %A A377751 _Paolo Xausa_, Nov 07 2024