A377752 Decimal expansion of the circumradius of a truncated icosahedron with unit edge length.
2, 4, 7, 8, 0, 1, 8, 6, 5, 9, 0, 6, 7, 6, 1, 5, 5, 3, 7, 5, 6, 6, 4, 0, 7, 9, 1, 2, 2, 6, 6, 3, 0, 7, 8, 0, 6, 9, 3, 6, 4, 9, 4, 7, 3, 2, 9, 7, 5, 7, 9, 4, 3, 8, 5, 5, 4, 2, 9, 5, 8, 3, 8, 8, 5, 3, 1, 5, 9, 5, 7, 7, 1, 2, 0, 7, 4, 2, 1, 6, 7, 6, 1, 8, 4, 2, 6, 2, 2, 0
Offset: 1
Examples
2.47801865906761553756640791226630780693649473...
Links
- Eric Weisstein's World of Mathematics, Truncated Icosahedron.
- Wikipedia, Truncated icosahedron.
- Index entries for algebraic numbers, degree 4.
Crossrefs
Programs
-
Mathematica
First[RealDigits[Sqrt[58 + 18*Sqrt[5]]/4, 10, 100]] (* or *) First[RealDigits[PolyhedronData["TruncatedIcosahedron", "Circumradius"], 10, 100]]
-
PARI
sqrt(58 + 18*sqrt(5))/4 \\ Charles R Greathouse IV, Feb 05 2025
Formula
Equals sqrt(58 + 18*sqrt(5))/4 = sqrt(58 + 18*A002163)/4.