cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377759 Number of edge cuts in the n-double cone graph.

This page as a plain text file.
%I A377759 #18 Jan 02 2025 09:34:22
%S A377759 1,12,156,2652,47580,835132,14274492,239210620,3954121852,64745687292,
%T A377759 1053187674876,17052187400700,275180267037180,4430223031522300,
%U A377759 71202253472533500,1142950923338418172,18330518457789188092,293793080103272648700,4706573484385846964220
%N A377759 Number of edge cuts in the n-double cone graph.
%C A377759 Extended to a(0) using the formula/recurrence. - _Eric W. Weisstein_, Dec 01 2024
%H A377759 Christian Sievers, <a href="/A377759/b377759.txt">Table of n, a(n) for n = 0..830</a>
%H A377759 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (35,-408,1898,-3980,3880,-1680,256).
%H A377759 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DoubleConeGraph.html">Double Cone Graph</a>.
%H A377759 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EdgeCut.html">Edge Cut</a>.
%F A377759 a(n) = 16^n - A158525(n+1)^2. - _Christian Sievers_, Nov 21 2024
%F A377759 G.f.: -(1-23*x+144*x^2+190*x^3-388*x^4-360*x^5+16*x^6)/((-1+x)*(-1+2*x)*(-1+16*x)*(1-4*x+2*x^2)*(1-12*x+4*x^2)). - _Eric W. Weisstein_, Dec 01 2024
%F A377759 a(n) = 35*a(n-1)-408*a(n-2)+1898*a(n-3)-3980*a(n-4)+3880*a(n-5)-1680*a(n-6)+256*a(n-7). - _Eric W. Weisstein_, Dec 01 2024
%t A377759 Table[16^n - 4 - 2^(n + 1) + -2^n ((3 + 2 Sqrt[2])^n + (3 - 2 Sqrt[2])^n) + 4 ((2 - Sqrt[2])^n + (2 + Sqrt[2])^n), {n, 0, 20}] // Expand (* _Eric W. Weisstein_, Dec 01 2024 *)
%t A377759 Table[16^n - 4 - 2^(n + 1) (ChebyshevT[n, 3] + 1) + 4 ((2 - Sqrt[2])^n + (2 + Sqrt[2])^n), {n, 0, 20}] // Expand (* _Eric W. Weisstein_, Dec 01 2024 *)
%t A377759 LinearRecurrence[{35, -408, 1898, -3980, 3880, -1680, 256}, {1, 12, 156, 2652, 47580, 835132, 14274492}, 20] (* _Eric W. Weisstein_, Dec 01 2024 *)
%t A377759 CoefficientList[Series[-(1 - 23 x + 144 x^2 + 190 x^3 - 388 x^4 - 360 x^5 + 16 x^6)/((-1 + x) (-1 + 2 x) (-1 + 16 x) (1 - 4 x + 2 x^2) (1 - 12 x + 4 x^2)), {x, 0, 20}], x] (* _Eric W. Weisstein_, Dec 01 2024 *)
%Y A377759 Cf. A158525.
%K A377759 nonn
%O A377759 0,2
%A A377759 _Eric W. Weisstein_, Nov 06 2024
%E A377759 a(7) and beyond from _Christian Sievers_, Nov 21 2024