This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377787 #8 Nov 20 2024 23:46:48 %S A377787 3,3,2,1,4,4,6,1,5,3,3,8,2,2,7,1,5,0,9,0,5,1,1,9,6,3,8,0,5,3,5,6,1,1, %T A377787 1,2,0,2,1,0,1,4,2,9,3,6,2,0,4,2,9,7,9,4,0,0,2,9,6,1,7,6,2,2,3,0,1,1, %U A377787 3,1,0,1,6,9,3,2,0,8,8,3,8,2,0,4,0,2,5,1,3,8,6,0,5,8,5,1,1,9,2,4 %N A377787 Decimal expansion of 30*arctan(2). %C A377787 Dehn invariant of the unit truncated icosahedron and Dehn invariant (negated) of the unit regular dodecahedron. %H A377787 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DehnInvariant.html">Dehn Invariant</a>. %H A377787 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RegularDodecahedron.html">Regular Dodecahedron</a>. %H A377787 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TruncatedIcosahedron.html">Truncated Icosahedron</a>. %H A377787 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %e A377787 33.214461533822715090511963805356111202101429362043... %t A377787 First[RealDigits[30 ArcTan[2], 10, 100]] %t A377787 First[RealDigits[PolyhedronData["Dodecahedron", "DehnInvariant"], 10, 100]] %t A377787 First[RealDigits[PolyhedronData["TruncatedIcosahedron", "DehnInvariant"], 10, 100]] %o A377787 (PARI) 30*atan(2) \\ _Charles R Greathouse IV_, Nov 20 2024 %K A377787 nonn,cons %O A377787 2,1 %A A377787 _Eric W. Weisstein_, Nov 07 2024