This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377793 #7 Jun 02 2025 15:28:29 %S A377793 1,2,9,21,128,194,713,874,2276,11898,12522,52469,103824,99930,173685, %T A377793 534743,1608864,1438340,3894769,5881191,5008669,11802600,16274460, %U A377793 36220208,132526590,178177142 %N A377793 a(n) is the number of squarefree composite k with lpf(k) = prime(n) such that m <= Omega(k), where lpf = A020639, m = floor(log k / log lpf(k)), and Omega = A001222. %C A377793 a(n) is the number of terms in A377713 with least prime factor prime(n). %F A377793 a(n) = length of row n of A377792. %e A377793 In A377713, there are terms k with smallest prime factor prime(n) as follows: %e A377793 Prime(n) | a(n) | k such that floor(log_lpf(k) k) <= Omega(k) %e A377793 ------------------------------------------------------------------------------- %e A377793 prime(1) = 2 | 1 | 6 %e A377793 prime(2) = 3 | 2 | 15, 27 %e A377793 prime(3) = 5 | 9 | 35, 55, 65, 85, 95, 115, 385, 455, 595 %e A377793 prime(4) = 7 | 21 | 77, 91, 119, 133, 161, 203, 217, 259, 287, 301, 329, 1001, %e A377793 | | 1309, 1463, 1547, 1729, 1771, 2093, 2233, 2261, 2387 %e A377793 prime(5) = 11 | 128 | 143, 187, 209, ..., 1733303 %t A377793 Table[c = 0; p = Prime[i]; m = p^3; %t A377793 Set[{w, t}, {{p, NextPrime[p]}, False}]; %t A377793 Do[Set[s, Times @@ w]; %t A377793 If[s < m, %t A377793 AppendTo[w, NextPrime@ Last[w] ]; m *= p; c++, %t A377793 If[Length[w] < 3, Break[], %t A377793 w = Append[w[[;; -3]], NextPrime@ w[[-2]] ]; m /= p] ], %t A377793 Infinity]; c, {i, 12}] %Y A377793 Cf. A001222, A020639, A120944, A377713, A377792. %K A377793 nonn,hard,more %O A377793 1,2 %A A377793 _Michael De Vlieger_, Nov 07 2024