cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377794 a(n) is the greatest number of prime factors with multiplicity of squarefree composite k such that k has lpf(k) = prime(n) such that m <= a(n), where lpf = A020639, m = floor(log k / log lpf(k)).

This page as a plain text file.
%I A377794 #7 Nov 13 2024 17:17:56
%S A377794 2,2,3,3,5,5,6,6,7,8,8,9,10,10,10,11,12,12,13,13,12,13,13,14,15,15,15,
%T A377794 15,14,14,17,17,18,17,19,18,19,19,19,20,20,20,21,21,20,20,22,23,23,23,
%U A377794 23,23,22,23,24,24,24,24,24,24,23,24,26,26,26,25,27,28,29
%N A377794 a(n) is the greatest number of prime factors with multiplicity of squarefree composite k such that k has lpf(k) = prime(n) such that m <= a(n), where lpf = A020639, m = floor(log k / log lpf(k)).
%C A377794 The smallest k such that lpf(k) = prime(n) with Omega(k) = A001222(k) = a(n) is the product of prime(n..n+a(n)-1).
%H A377794 Michael De Vlieger, <a href="/A377794/b377794.txt">Table of n, a(n) for n = 1..10000</a>
%H A377794 Michael De Vlieger, <a href="/A377794/a377794.png">Log log scatterplot of a(n)</a>, n = 1..16384.
%e A377794 Table relating the first 12 terms with prime decomposition of smallest k in A377713 (or A377792) such that lpf(k) = prime(n) and Omega(k) = a(n):
%e A377794    n                  k   prime factors of k                         a(n)
%e A377794   -----------------------------------------------------------------------
%e A377794    1                  6    2 *  3                                      2
%e A377794    2                 15    3 *  5                                      2
%e A377794    3                385    5 *  7 * 11                                 3
%e A377794    4               1001    7 * 11 * 13                                 3
%e A377794    5            1062347   11 * 13 * 17 * 19 * 23                       5
%e A377794    6            2800733   13 * 17 * 19 * 23 * 29                       5
%e A377794    7          247110827   17 * 19 * 23 * 29 * 31 * 37                  6
%e A377794    8          595973171   19 * 23 * 29 * 31 * 37 * 41                  6
%e A377794    9        63392725189   23 * 29 * 31 * 37 * 41 * 43 * 47             7
%e A377794   10      8618654420261   29 * 31 * 37 * 41 * 43 * 47 * 53 * 59        8
%e A377794   11     18128893780549   31 * 37 * 41 * 43 * 47 * 53 * 59 * 61        8
%e A377794   12   2781907990776503   37 * 41 * 43 * 47 * 53 * 59 * 61 * 67 * 71   9
%t A377794 Table[j = 1; While[Times @@ Prime[Range[i + 1, i + j]] < Prime[i]^(j + 1), j++]; j, {i, 120}]
%Y A377794 Cf. A001222, A020639, A120944, A377713, A377792.
%K A377794 nonn,easy
%O A377794 1,1
%A A377794 _Michael De Vlieger_, Nov 07 2024