cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A377796 Decimal expansion of the surface area of a truncated icosidodecahedron (great rhombicosidodecahedron) with unit edge length.

Original entry on oeis.org

1, 7, 4, 2, 9, 2, 0, 3, 0, 3, 4, 2, 3, 2, 3, 9, 2, 0, 8, 8, 2, 9, 3, 2, 1, 0, 7, 5, 2, 6, 2, 8, 3, 4, 6, 5, 7, 2, 8, 4, 8, 5, 2, 2, 1, 9, 2, 0, 4, 4, 5, 1, 9, 1, 6, 5, 2, 8, 4, 8, 8, 9, 6, 8, 9, 4, 8, 0, 3, 8, 8, 9, 1, 6, 2, 1, 1, 6, 7, 2, 8, 6, 6, 6, 0, 7, 2, 1, 9, 7
Offset: 3

Views

Author

Paolo Xausa, Nov 07 2024

Keywords

Examples

			174.292030342323920882932107526283465728485221920...
		

Crossrefs

Cf. A377797 (volume), A377798 (circumradius), A377799 (midradius).

Programs

  • Mathematica
    First[RealDigits[30*(1 + Sqrt[3] + Sqrt[5 + Sqrt[20]]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedIcosidodecahedron", "SurfaceArea"], 10, 100]]

Formula

Equals 30*(1 + sqrt(3) + sqrt(5 + 2*sqrt(5))) = 30*(A090388 + A019970).

A377797 Decimal expansion of the volume of a truncated icosidodecahedron (great rhombicosidodecahedron) with unit edge length.

Original entry on oeis.org

2, 0, 6, 8, 0, 3, 3, 9, 8, 8, 7, 4, 9, 8, 9, 4, 8, 4, 8, 2, 0, 4, 5, 8, 6, 8, 3, 4, 3, 6, 5, 6, 3, 8, 1, 1, 7, 7, 2, 0, 3, 0, 9, 1, 7, 9, 8, 0, 5, 7, 6, 2, 8, 6, 2, 1, 3, 5, 4, 4, 8, 6, 2, 2, 7, 0, 5, 2, 6, 0, 4, 6, 2, 8, 1, 8, 9, 0, 2, 4, 4, 9, 7, 0, 7, 2, 0, 7, 2, 0
Offset: 3

Views

Author

Paolo Xausa, Nov 08 2024

Keywords

Examples

			206.80339887498948482045868343656381177203091798...
		

Crossrefs

Cf. A377796 (surface area), A377798 (circumradius), A377799 (midradius).

Programs

  • Mathematica
    First[RealDigits[95 + 50*Sqrt[5], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedIcosidodecahedron", "Volume"], 10, 100]]

Formula

Equals 95 + 50*sqrt(5) = 95 + 50*A002163.
Equals 45 + 100*A001622.

A377798 Decimal expansion of the circumradius of a truncated icosidodecahedron (great rhombicosidodecahedron) with unit edge length.

Original entry on oeis.org

3, 8, 0, 2, 3, 9, 4, 4, 9, 9, 8, 5, 1, 2, 9, 3, 5, 8, 4, 7, 6, 6, 8, 3, 6, 7, 1, 4, 1, 1, 0, 3, 2, 3, 2, 0, 9, 3, 0, 3, 8, 9, 2, 8, 6, 5, 2, 5, 1, 2, 8, 5, 6, 2, 1, 1, 8, 9, 2, 8, 4, 3, 9, 8, 2, 3, 4, 3, 9, 6, 1, 4, 2, 2, 8, 9, 2, 1, 2, 6, 6, 5, 7, 3, 7, 7, 7, 8, 2, 4
Offset: 1

Views

Author

Paolo Xausa, Nov 08 2024

Keywords

Examples

			3.802394499851293584766836714110323209303892865251...
		

Crossrefs

Cf. A377796 (surface area), A377797 (volume), A377799 (midradius).

Programs

  • Mathematica
    First[RealDigits[Sqrt[31/4 + Sqrt[45]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedIcosidodecahedron", "Circumradius"], 10, 100]]

Formula

Equals sqrt(31/4 + 3*sqrt(5)) = sqrt(31/4 + A010499) = sqrt(31 + A344171)/2.
Showing 1-3 of 3 results.