This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377802 #9 Nov 15 2024 23:33:42 %S A377802 1,2,1,4,3,2,6,5,4,3,9,8,7,6,5,12,11,10,9,8,7,16,15,14,13,12,11,10,20, %T A377802 19,18,17,16,15,14,13,25,24,23,22,21,20,19,18,17,30,29,28,27,26,25,24, %U A377802 23,22,21,36,35,34,33,32,31,30,29,28,27,26,42,41,40,39,38,37,36,35,34,33,32,31 %N A377802 Triangle read by rows: T(n, k) = (2 * (n+1)^2 + 7 - (-1)^n) / 8 - k. %C A377802 The natural numbers, based on quarter-squares (A002620 and A033638); every natural number occurs exactly twice. %F A377802 T(n, k) = A002620(n+1) + 1 - k. %F A377802 T(2*n-1, n) = n^2 - n + 1 = A002061(n); T(2*n-2, n) = (n-1)^2 = A000290(n-1) for n > 1; T(2*n-3, n) = (n-1) * (n-2) = A002378(n-2) for n > 2; T(2*n-4, n) = (n-1) * (n-3) = A005563(n-3) for n > 3. %F A377802 Row sums are (2 * n^3 + 5 * n - n * (-1)^n) / 8 = (A006003(n) + A026741(n)) / 2. %F A377802 G.f.: x*y*(1 - x*y + x^2*y + x^4*y^2 - x^5*y^3 + x^6*y^3 - x^3*y*(1 + 2*y - y^2))/((1 - x)^3*(1 + x)*(1 - x*y)^3*(1 + x*y)). - _Stefano Spezia_, Nov 08 2024 %e A377802 Triangle T(n, k) for 1 <= k <= n starts: %e A377802 n\ k : 1 2 3 4 5 6 7 8 9 10 11 12 13 %e A377802 ========================================================== %e A377802 1 : 1 %e A377802 2 : 2 1 %e A377802 3 : 4 3 2 %e A377802 4 : 6 5 4 3 %e A377802 5 : 9 8 7 6 5 %e A377802 6 : 12 11 10 9 8 7 %e A377802 7 : 16 15 14 13 12 11 10 %e A377802 8 : 20 19 18 17 16 15 14 13 %e A377802 9 : 25 24 23 22 21 20 19 18 17 %e A377802 10 : 30 29 28 27 26 25 24 23 22 21 %e A377802 11 : 36 35 34 33 32 31 30 29 28 27 26 %e A377802 12 : 42 41 40 39 38 37 36 35 34 33 32 31 %e A377802 13 : 49 48 47 46 45 44 43 42 41 40 39 38 37 %e A377802 etc. %o A377802 (PARI) T(n,k)=(2*(n+1)^2+7-(-1)^n)/8-k %Y A377802 A002620 (column 1), A024206 (column 2), A014616 (column 3), A004116 (column 4), A033638 (main diagonal), A290743 (1st subdiagonal). %Y A377802 Cf. A006003, A026741, A002061, A000290, A002378, A005563, A246694. %K A377802 nonn,easy,tabl %O A377802 1,2 %A A377802 _Werner Schulte_, Nov 07 2024