A377806 Decimal expansion of the circumradius of a snub dodecahedron with unit edge length.
2, 1, 5, 5, 8, 3, 7, 3, 7, 5, 1, 1, 5, 6, 3, 9, 7, 0, 1, 8, 3, 6, 6, 2, 9, 0, 7, 6, 6, 9, 3, 0, 5, 8, 2, 7, 7, 0, 1, 6, 8, 5, 1, 2, 1, 8, 7, 7, 4, 8, 1, 1, 8, 2, 2, 4, 1, 2, 2, 1, 5, 4, 3, 0, 1, 2, 0, 0, 6, 7, 0, 8, 0, 9, 4, 9, 4, 8, 4, 0, 0, 0, 5, 3, 4, 2, 9, 9, 2, 6
Offset: 1
Examples
2.1558373751156397018366290766930582770168512187748...
Links
- Eric Weisstein's World of Mathematics, Snub Dodecahedron.
- Wikipedia, Snub dodecahedron.
- Index entries for algebraic numbers, degree 12.
Crossrefs
Programs
-
Mathematica
First[RealDigits[Sqrt[1 + 1/(1 - Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1])]/2, 10, 100]] (* or *) First[RealDigits[PolyhedronData["SnubDodecahedron", "Circumradius"], 10, 100]]
Formula
Equals sqrt(1 + 1/(1 - A377849))/2.
Equals the real root closest to 2 of 4096*x^12 - 27648*x^10 + 47104*x^8 - 35776*x^6 + 13872*x^4 -2696*x^2 + 209.