This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377807 #9 Feb 11 2025 09:56:14 %S A377807 2,0,9,7,0,5,3,8,3,5,2,5,2,0,8,7,9,9,2,4,0,3,9,5,9,0,5,2,3,4,8,2,8,6, %T A377807 2,4,0,0,3,0,8,3,9,7,3,0,5,8,1,0,3,0,7,6,2,7,3,1,7,0,6,1,7,3,1,2,7,0, %U A377807 5,2,9,1,4,2,5,7,7,7,5,4,5,5,3,7,3,4,0,9,4,8 %N A377807 Decimal expansion of the midradius of a snub dodecahedron with unit edge length. %H A377807 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SnubDodecahedron.html">Snub Dodecahedron</a>. %H A377807 Wikipedia, <a href="https://en.wikipedia.org/wiki/Snub_dodecahedron">Snub dodecahedron</a>. %H A377807 <a href="/index/Al#algebraic_12">Index entries for algebraic numbers, degree 12</a>. %F A377807 Equals sqrt(1/(1 - A377849))/2. %F A377807 Equals the real root closest to 2 of 4096*x^12 - 21504*x^10 + 16384*x^8 - 4672*x^6 + 624*x^4 - 40*x^2 + 1. %e A377807 2.0970538352520879924039590523482862400308397305810... %t A377807 First[RealDigits[Sqrt[1/(1 - Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1])]/2, 10, 100]] (* or *) %t A377807 First[RealDigits[PolyhedronData["SnubDodecahedron", "Midradius"], 10, 100]] %Y A377807 Cf. A377804 (surface area), A377805 (volume), A377806 (circumradius). %Y A377807 Cf. A239798 (analogous for a regular dodecahedron). %Y A377807 Cf. A377849. %K A377807 nonn,cons,easy %O A377807 1,1 %A A377807 _Paolo Xausa_, Nov 10 2024