This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377809 #20 Nov 09 2024 17:28:12 %S A377809 2,5,5,9,9,9,14,14,14,14,20,20,20,20,20,27,27,27,27,27,27,35,35,35,35, %T A377809 35,35,35,44,44,44,44,44,44,44,44,54,54,54,54,54,54,54,54,54,65,65,65, %U A377809 65,65,65,65,65,65,65,77,77,77,77,77,77,77,77,77,77,77,90 %N A377809 k*(k+3)/2 appears k times. %F A377809 a(n) = A002024(n)*(A002024(n)+3)/2. %F A377809 First difference of A119713. %F A377809 T(n,k) = A000096(n) for 1 <= k <= n. - _Alois P. Heinz_, Nov 09 2024 %F A377809 G.f.: x*y*(2 - x*y)/((1 - x)*(1 - x*y)^3). - _Stefano Spezia_, Nov 09 2024 %e A377809 As triangle: %e A377809 2; %e A377809 5, 5; %e A377809 9, 9, 9; %e A377809 14, 14, 14, 14; %e A377809 20, 20, 20, 20, 20; %e A377809 ... %t A377809 s={};Do[AppendTo[s,Table[k(k+3)/2,k]],{k,12}];Flatten[s] (* _James C. McMahon_, Nov 09 2024 *) %o A377809 (Python) %o A377809 from math import isqrt %o A377809 def A377809(n): return (r:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))*(r+3)>>1 %Y A377809 Cf. A000096, A002024, A119713. %K A377809 nonn,easy,tabl %O A377809 1,1 %A A377809 _Chai Wah Wu_, Nov 08 2024