cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377823 Sum of the positions of maximum parts in all compositions of n.

This page as a plain text file.
%I A377823 #17 Nov 21 2024 09:04:11
%S A377823 0,1,4,10,23,50,110,240,526,1147,2489,5368,11510,24543,52090,110109,
%T A377823 231959,487245,1020980,2134838,4455582,9283742,19314740,40128699,
%U A377823 83265342,172564435,357228078,738707908,1526004117,3149310585,6493394292,13376521031,27532616663
%N A377823 Sum of the positions of maximum parts in all compositions of n.
%F A377823 G.f.: A(x) = d/dy A(x,y)|_{y = 1}, where A(x,y) = Sum_{i>0} (x^i * y^(i*(i+1)/2)) + Sum_{m>1} (Sum_{i>0} (x^m * y^i * ((x-x^m)/(1-x))^(i-1) * (Sum_{j>=0} (Product_{u=1..j} ((x-x^m)/(1-x) + x^m * y^(u+i)) ) ) ) ).
%e A377823 The composition of 7, (1,2,1,1,2) has maximum parts at positions 2 and 5; so it contributes 7 to a(7) = 240.
%o A377823 (PARI)
%o A377823 A_xy(N) = {my(x='x+O('x^N), h = sum(i=1,N, y^(i*(i+1)/2)*x^i)+sum(m=2,N, sum(i=1,N, ((y^i)*x^m)*((x-x^m)/(1-x))^(i-1)*(sum(j=0,N-m-i, prod(u=1,j, (x-x^m)/(1-x)+(y^(u+i))*x^m)))))); h}
%o A377823 P_xy(N) = Pol(A_xy(N), {x})
%o A377823 A_x(N) = {my(px = deriv(P_xy(N),y), y=1); Vecrev(eval(px))}
%o A377823 A_x(20)
%Y A377823 Cf. A001792, A010054, A011782, A097976, A097979, A377824.
%K A377823 nonn,easy
%O A377823 0,3
%A A377823 _John Tyler Rascoe_, Nov 08 2024