cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377824 Sum of the positions of minimum parts in all compositions of n.

This page as a plain text file.
%I A377824 #28 Apr 19 2025 08:48:50
%S A377824 0,1,4,10,29,70,181,435,1046,2470,5762,13283,30371,68847,154935,
%T A377824 346433,770154,1703152,3748574,8214805,17931172,38997819,84531066,
%U A377824 182661514,393578129,845777569,1813017039,3877390908,8274351482,17621535902,37456091552,79472869966
%N A377824 Sum of the positions of minimum parts in all compositions of n.
%H A377824 Alois P. Heinz, <a href="/A377824/b377824.txt">Table of n, a(n) for n = 0..1000</a>
%F A377824 G.f.: A(x) = d/dy A(x,y)|_{y = 1}, where A(x,y) = Sum_{m>0} (Sum_{i>0} (x^m * y^i * (x^(m+1)/(1-x))^(i-1) * (Sum_{j>=0} (Product_{u=1..j} (x^(m+1)/(1-x) + x^m * y^(u+i)) ) ) ) ).
%F A377824 Conjecture: a(n) ~ n^2 * 2^(n-5). - _Vaclav Kotesovec_, Apr 19 2025
%e A377824 The composition of 7, (1,2,1,1,2) has minimum parts at positions 1, 3, and 4; so it contributes 8 to a(7) = 435.
%p A377824 b:= proc(n, i, p) option remember; `if`(i<1, 0,
%p A377824       `if`(irem(n, i)=0, (j-> (p+j)!/j!*(p+j+1)/2*j)(n/i), 0)+
%p A377824       add(b(n-i*j, i-1, p+j)/j!, j=0..(n-1)/i))
%p A377824     end:
%p A377824 a:= n-> b(n$2, 0):
%p A377824 seq(a(n), n=0..31);  # _Alois P. Heinz_, Nov 12 2024
%t A377824 b[n_, i_, p_] := b[n, i, p] = If[i < 1, 0, If[Mod[n, i] == 0, Function[j, (p + j)!/j!*(p + j + 1)/2*j][n/i], 0] + Sum[b[n - i*j, i - 1, p + j]/j!, {j, 0, (n - 1)/i}]];
%t A377824 a[n_] := b[n, n, 0];
%t A377824 Table[a[n], {n, 0, 31}] (* _Jean-François Alcover_, Apr 19 2025, after _Alois P. Heinz_ *)
%o A377824 (PARI)
%o A377824 A_xy(N) = {my(x='x+O('x^N), h = sum(m=1,N, sum(i=1,N, ((y^i)*x^m)*((x^(m+1))/(1-x))^(i-1)*(sum(j=0,N-m-i, prod(u=1,j, (x^(m+1))/(1-x)+(y^(u+i))*x^m)))))); h}
%o A377824 P_xy(N) = Pol(A_xy(N), {x})
%o A377824 A_x(N) = {my(px = deriv(P_xy(N),y), y=1); Vecrev(eval(px))}
%o A377824 A_x(20)
%Y A377824 Cf. A001792, A010054, A011782, A097976, A097979, A377823.
%K A377824 nonn,easy
%O A377824 0,3
%A A377824 _John Tyler Rascoe_, Nov 08 2024