cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377844 Numbers that have a single odd exponent larger than 1 in their prime factorization.

Original entry on oeis.org

8, 24, 27, 32, 40, 54, 56, 72, 88, 96, 104, 108, 120, 125, 128, 135, 136, 152, 160, 168, 184, 189, 200, 224, 232, 243, 248, 250, 264, 270, 280, 288, 296, 297, 312, 328, 343, 344, 351, 352, 360, 375, 376, 378, 384, 392, 408, 416, 424, 432, 440, 456, 459, 472, 480, 486, 488, 500
Offset: 1

Views

Author

Amiram Eldar, Nov 09 2024

Keywords

Comments

First differs from A295661, A325990 and A376142 at n = 24: A295661(24) = A325990(24) = A376142(24) = 216 = 2^3 * 3^3 is not a term of this sequence.
Differs from A060476 by having the terms 432, 648, 1728, ..., and not having the terms 1, 216, 256, 768, 864, ... .
The asymptotic density of this sequence is Product_{p prime} (1 - 1/(p^2*(p+1))) * Sum_{p prime} (1/(p^3+p^2-1)) = 0.11498368544519741081... .

Crossrefs

Subsequence of A295661.
Subsequences: A065036, A143610, A163569.

Programs

  • Mathematica
    q[n_] := Count[FactorInteger[n][[;; , 2]], _?(# > 1 && OddQ[#] &)] == 1; Select[Range[500], q]
  • PARI
    is(k) = #select(x -> x>1 && x%2, factor(k)[, 2]) == 1;