cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377850 Noll index series of Zernike polynomials converted to Fringe index.

This page as a plain text file.
%I A377850 #26 Apr 02 2025 04:43:51
%S A377850 1,2,3,4,6,5,8,7,11,10,9,12,13,17,18,14,15,19,20,26,27,16,22,21,29,28,
%T A377850 38,37,24,23,31,30,40,39,51,50,25,32,33,41,42,52,53,65,66,34,35,43,44,
%U A377850 54,55,67,68,82,83,36,46,45,57,56,70,69,85,84,102,101,48,47,59,58,72,71,87,86
%N A377850 Noll index series of Zernike polynomials converted to Fringe index.
%C A377850 Fringe indices of Zernike polynomials sorted by Noll index.
%H A377850 Gerhard Ramsebner, <a href="/A377850/b377850.txt">Table of n, a(n) for n = 1..10000</a>
%H A377850 Gerhard Ramsebner, <a href="/A377850/a377850.pdf">Noll index series of Zernike polynomials converted to Fringe index</a>
%H A377850 Gerhard Ramsebner, <a href="/A377850/a377850.svg">Noll index (animated SVG)</a>
%H A377850 Gerhard Ramsebner, <a href="/A377850/a377850_1.svg">Fringe index (animated SVG)</a>
%H A377850 Gerhard Ramsebner, <a href="/A377850/a377850_2.svg">Plot</a>
%F A377850 a(j) = (1+(n+abs(m))/2)^2-2*abs(m)+[m<0] where n=floor((sqrt(8*(j-1)+1)-1)/2), m=(-1)^j*(mod(n,2)+2*floor((j-n*(n+1)/2-1+mod(n+1,2))/2)) and [] is the Iverson bracket.
%F A377850 a(A176988(j)) = A375510(j) assuming offset 1 in all 3 sequences and serialized versions.
%e A377850   Noll indices      Fringe indices
%e A377850    1                 1
%e A377850    3  2              3  2
%e A377850    5  4  6           6  4 5
%e A377850    9  7  8 10       11  8 7 10
%e A377850   15 13 11 12 14    18 13 9 12 17
%e A377850   ...               ...
%o A377850 (PARI) A377850(j) = my(n=floor( (sqrt(8*(j-1)+1)-1)/2 ), m=(-1)^j*(n%2+2*floor((j-n*(n+1)/2-1+(n+1)%2)/2))); (1+(n+abs(m))/2)^2 -2*abs(m)+(m<0);
%Y A377850 Cf. A176988, A375510.
%K A377850 nonn,easy
%O A377850 1,2
%A A377850 _Gerhard Ramsebner_, Nov 09 2024