cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377866 Number of subwords of the form DUUD or DDUUD in nondecreasing Dyck paths of length 2n.

This page as a plain text file.
%I A377866 #17 Mar 04 2025 08:36:13
%S A377866 0,0,0,1,5,18,59,185,564,1685,4957,14406,41455,118321,335400,945193,
%T A377866 2650229,7398330,20573219,57013865,157517532,433993661,1192779085,
%U A377866 3270835566,8950887895,24448816993,66665369424,181489721425,493361278949
%N A377866 Number of subwords of the form DUUD or DDUUD in nondecreasing Dyck paths of length 2n.
%C A377866 A Dyck path is nondecreasing if the y-coordinates of its valleys form a nondecreasing sequence.
%H A377866 E. Barcucci, A. Del Lungo, S. Fezzi, and R. Pinzani, <a href="http://dx.doi.org/10.1016/S0012-365X(97)82778-1">Nondecreasing Dyck paths and q-Fibonacci numbers</a>, Discrete Math., 170 (1997), 211-217.
%H A377866 Éva Czabarka, Rigoberto Flórez, Leandro Junes and José L. Ramírez, <a href="https://doi.org/10.1016/j.disc.2018.06.032">Enumerations of peaks and valleys on non-decreasing Dyck paths</a>, Discrete Math., Vol. 341, No. 10 (2018), pp. 2789-2807. See p. 2798.
%H A377866 Rigoberto Flórez, Leandro Junes, Luisa M. Montoya, and José L. Ramírez, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL28/Florez/florez51.html">Counting Subwords in Non-Decreasing Dyck Paths</a>, J. Int. Seq. (2025) Vol. 28, Art. No. 25.1.6. See pp. 15, 17, 19.
%H A377866 Rigoberto Flórez, Leandro Junes, and José L. Ramírez, <a href="https://doi.org/10.1016/j.disc.2019.06.018">Enumerating several aspects of non-decreasing Dyck paths</a>, Discrete Mathematics, Vol. 342, Issue 11 (2019), 3079-3097. See page 3092.
%H A377866 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (6,-11,6,-1).
%F A377866 a(n) = (2*n*L(2*n-5) - 6*F(2*n-6) - F(2*n-7))/5 for n>=3, where F(n)=A000045(n) and L(n)=A000032(n).
%F A377866 G.f.:  -x^3*(x^2+x-1)/ (x^2-3*x+1)^2.
%F A377866 E.g.f.: exp(3*x/2)*(5*(35 - 8x)*cosh(sqrt(5)*x/2) - sqrt(5)*(79 - 20*x)*sinh(sqrt(5)*x/2))/25 - 7 - x. - _Stefano Spezia_, Nov 10 2024
%t A377866 Table[If[n<3,0,(2*n*LucasL[2*n-5]-6*Fibonacci[2*n-6]-Fibonacci[2*n-7])/5], {n,0,20}]
%Y A377866 Cf. A000032, A000045, A377679,  A377670, A375995.
%K A377866 nonn,easy
%O A377866 0,5
%A A377866 _Rigoberto Florez_, Nov 10 2024